Method of characteristics and first order ODE

characteristicsordinary differential equationspartial differential equations

While solving an PDE using method of characteristics on of the equations I got is:

$$y_t=x+y\Rightarrow y_t-y=x$$

This is a linear first order ODE that can be solve as follow:

$$y_h=c_2e^t$$

Then using variation of parameters should $y_p=c_s(s)e^t$ or $y_p=c_2(t,s)e^t$?

The solution is still $y=y_h+y_p$?

The PDE is:

$$
\begin{cases}
xu_x+(x+y)u_y=1\\
u(1,y)=y\\
\end{cases}
$$

Which I once asked about

Best Answer

$$\begin{cases} xu_x+(x+y)u_y=1\\ u(1,y)=y\\ \end{cases} $$ $$\frac {dx}{x}=\dfrac {dy}{x+y}=\dfrac {dz}{1}$$ So you need to solve this system of DE: $$\begin{cases}\dfrac {dx}{x}=\dfrac {dy}{x+y} \\ \dfrac {dz}{1}=\dfrac {dx}{x} \tag{2}\end{cases}$$ $$\dfrac {dx}{x}=\dfrac {dy}{x+y} $$ $$(x+y)dx=xdy $$ $$ydx-xdy=-xdx$$ $$\frac {ydx-xdy}{x^2}=-\frac 1 x dx$$ $$\frac {xdy-ydx}{x^2}=\frac 1 x dx$$ $$d\left (\frac y x \right )= \frac 1 x dx$$ Integrate: $$ y (x) = x\ln x+C_2x$$ The second one is easy to integrate: $$\dfrac {dz}{1}=\dfrac {dx}{x} \tag{2}$$ $$z+C_1=\ln x$$ You can surely take from there.