Maximum of $27abc+\sum\limits_{\mathrm{cyc}}a\sqrt{a^2+2bc}$ for positives $a+b+c=\frac{1}{\sqrt{3}}$

algebra-precalculuscontest-mathinequality

Maximum possible value of $27abc+a\sqrt{a^2+2bc}+b\sqrt{b^2+2ca}+c\sqrt{c^2+2ab}$ if real positive numbers $a, b, c$ satify $a+b+c=\frac{1}{\sqrt{3}}$

This is a problem from an Inequality paper that they gave us. I believe that we have to use Cauchy-Schwarz.
I think that we somehow need to change the under root to a perfect square as the 2ab, 2ac… are giving us that clue. Although I tried to go through that direction, I ended up not knowing how to transfrom it into that, neither knowing if it is solved like this.

Best Answer

Denote the expression by $f(a, b, c)$.

Using $2uv \le u^2 + v^2$, we have \begin{align*} &a\sqrt{a^2+2bc}+b\sqrt{b^2+2ca}+c\sqrt{c^2+2ab}\\ \le{}& a\sqrt{a^2+b^2 + c^2}+b\sqrt{b^2+c^2 + a^2}+c\sqrt{c^2+a^2 + b^2}\\ ={}& (a + b + c)\sqrt{a^2 + b^2 + c^2}. \tag{1} \end{align*}

Also, by AM-GM, we have $$(a + b + c)(ab + bc + ca) \ge 3\sqrt[3]{abc}\cdot 3\sqrt[3]{ab \cdot bc \cdot ca} = 9abc. \tag{2}$$

Using (1) and (2), letting $x = ab + bc + ca \in [0, 1/9]$ (using $(a + b + c)^2 \ge 3(ab + bc + ca)$), we have \begin{align*} f(a, b, c) &\le 3(a + b + c)(ab + bc + ca) + (a + b + c)\sqrt{a^2 + b^2 + c^2}\\ &= \sqrt 3\, (ab + bc + ca) + \frac{1}{\sqrt 3} \sqrt{\frac13 - 2(ab + bc + ca)}\\ &= \sqrt 3\, x + \frac{1}{\sqrt 3} \sqrt{\frac13 - 2x}\\ &\le \frac{2\sqrt 3}{9} \end{align*} where we use $a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) = 1/3 - 2(ab + bc + ca)$, and $$\left(\frac{2\sqrt 3}{9} - \sqrt 3\, x\right)^2 - \left(\frac{1}{\sqrt 3} \sqrt{\frac13 - 2x}\right)^2 = \frac{1}{27}(9x - 1)^2 \ge 0.$$

Also, when $a = b = c = \frac{1}{3\sqrt 3}$, we have $f(a, b, c) = \frac{2\sqrt 3}{9}$.

Thus, the maximum of $f(a,b,c)$ is $\frac{2\sqrt 3}{9}$.

Related Question