Maximum Likelihood – Maximum Likelihood for Uniform Distribution on the Interval [$?_1,?_2]$

calculusmaximum likelihoodstatistics

Based on a random sample (6.3, 1.8, 14.2, 7.6) use the method of maximum likelihood to estimate the maximum likelihoods for $\theta_1$ and $\theta_2$.

$$f_y(y;\theta_1, \theta_2) = \frac{1}{\theta_2- \theta_1} \;, \quad \theta_1 \le \theta_2$$

$$L(\theta_1, \theta_2) = \prod_\limits{i=1}^{n}\frac{1}{\theta_2-\theta_1} \\
= \frac{1}{(\theta_2- \theta_1)^n}\prod_\limits{i=1}^{n}1(\theta_1 \le y_i \le \theta_2) \\
= \frac{1}{(\theta_2- \theta_1)^n}\prod_\limits{i=1}^{n}1(\theta_1 \le y_i)1(y_i \le \theta_2) \\
\text{Let } T = \ln[L(\theta_1, \theta_2)] = -n \ln(\theta_2 – \theta_1) + \sum_\limits{i=1}^n\ln(1(\theta_1 \le \min_i(y_i))1(\max_i(y_i) \le \theta_2)) \\
\begin{cases}
-\infty, & \text{if } \theta_1>\min_i(y_i) \text{ or } \theta_2 < \max_i(y_i) \\
-n\ln(\theta_2 – \theta_1), & \text{otherwise}
\end{cases} $$

now take the derivative with respect to one of them

$$\frac{\partial{T}}{\partial{\theta_2}} = \frac{-n}{\theta_2 – \theta_1} \\
= \frac{n}{\theta_1 – \theta_2}$$

To maximise this we want the numerator magnitude to be as small as possible, so we set $\theta_2 = \max_i(y_i)$

and for $\theta_1$

$$\frac{\partial{T}}{\partial{\theta_1}}=\frac{n}{\max_i(y_i) – \theta_1}$$

To maximise this, we want $\theta_1 = \min_i(y_i)$

This implies $\theta_1 = 1.8$ and $\theta_2 = 14.2$

If someone could check my correctness particularly around the indicator functions because I'm new to those and anything else you can see wrong in math or formatting.

Actually I think that stuff in yellow directly above is not right. I'm not equating the derivative to 0. I think I got the correct answer regardless.
Probably more preferably is to look at the

$$-n\ln(\theta_2 – \theta_1)$$

And know to minimise the value in the brackets will maximise the $\ln[L(\theta_1, \theta_2)]$ function, and coming to the same result that I did illegitimately.

Implies that $\hat{\theta_1} = 1.8$ and $\hat{\theta_2}=14.2$

Best Answer

This is more of an extended comment rather than an answer.

Sometimes a picture will tell you that the maximum likelihood estimates don't occur when derivatives are zero. Here is a plot of the likelihood surface for your data and model:

Likelihood surface

Related Question