Maximal area under projectile trajectory

calculusintegrationparametricphysicsprojectile motion

Problem:

A projectile is fired with an initial velocity of $v$ at an angle of $\theta$ from the ground. Then its trajectory can modeled by the parametric equations
\begin{align*}
x &= vt \cos \theta, \\
y &= vt \sin \theta – \frac{1}{2} gt^2,
\end{align*}
where $t$ denotes time and $g$ denotes acceleration due to gravity, forming a parabolic arch.

Then the maximal area under the trajectory is given by $k \cdot \frac{v^4}{g^2}$ for some constant $k.$ Find $k.$

My Work:
I substituted the first equation for t into the second equation getting:
$$y = \frac{\sin\theta x}{\cos\theta} – \frac{gx^2}{2v^2(\cos\theta)^2}.$$
How do I proceed?

Best Answer

Note that the projectile’s flying time in the air is $T=\frac{2v\sin\theta}g$. The area under the trajectory is

\begin{align} A =\int_0^T y(t)x’(t)dt=\int_0^T (vt \sin \theta - \frac{1}{2} gt^2)v\cos\theta dt=\frac{2v^4}{3g^2}\cos\theta\sin^3\theta \end{align}

Then, set $dA/d\theta=0$ to get the optimal angle $\theta =\frac\pi3$. Thus, the maximal area is

$$A_{max}=\frac{2v^4}{3g^2}\cos\frac\pi3\sin^3\frac\pi3=\frac{\sqrt3v^4}{8g^2} $$ and $k=\frac{\sqrt3}8$.