Maurer-Cartan form defines a connection on a Lie Group considered as a principal $G$ bundle.

differential-geometrylie-groupsprincipal-bundlesvector-bundles

Given a Lie group $G$ we can consider it as a principal $G$ bundle over any element in $G$.
Consider the Maurer-Cartan form $\omega$ defined by the left translation: for $X\in T_gG$ we have
$\omega(X)=d_g(L_{g^{-1}})(X)$.

To show that $\omega$ defines a connection on the principal bundle we must show the following:

  1. $R^*_g\omega=Ad_{g^{-1}}(\omega)$, for all $g\in G$.

  2. $\iota_{\alpha(X)}\omega=X$ for all $X$ in $\mathfrak{g}$.

I have not been able to get very far in my attempt to show 1/
On the left hand side we have $R^*_g\omega=R^*_gd_g(L_{g^{-1}})$.
On the right hand side we have $Ad_{g^{-1}}(\omega)=d(R_g L_{g^{-1}})(d_gL_{g^{-1}})=d(R_g(d_gL_{g^{-1}}))dL_{g^{-1}}(d_gL_{g^{-1}})$. But I do not see how to reconcile these two sides.

Best Answer

Let $h$ be any point of $G$ and let $Y_h\in T_hG.$ Then if $g\in G$ we have \begin{equation} R_{g}^{*}(\omega)(Y_h)=\omega((R_{g})_{*}Y_h)=(L_{g^{-1}h^{-1}})_{*}((R_{g})_{*}Y_h)\overset{(*)}{=}(R_{g})_{*}(L_{g^{-1}h^{-1}})_{*}(Y_{h}) \end{equation} $$=(R_{g})_{*}(L_{g^{-1}})_{*}((L_{h^{-1}})_{*}Y_{h})=(R_{g})_{*}(L_{g^{-1}})_{*}(\omega(Y_h))=Ad(g^{-1})(\omega(Y_{h})). $$ The equality $(*)$ follows from the commutation of $R_{a}$ and $L_{b}$, for all $a,b\in G.$