[Math] $X/{\sim}$ is Hausdorff if and only if $\sim$ is closed in $X \times X$

general-topologyquotient-spacesseparation-axioms

$X$ is a Hausdorff space and $\sim$ is an equivalence relation.

If the quotient map is open, then $X/{\sim}$ is a Hausdorff space if and only if $\sim$ is a closed subset of the product space $X \times X$.

Necessity is obvious, but I don't know how to prove the other side. That is, $\sim$ is a closed subset of the product space $X \times X$ $\Rightarrow$ $X/{\sim}$ is a Hausdorff space. Any advices and comments will be appreciated.

Best Answer

Since the map $\pi:X\to X/\sim$ is open, it's clear that the map $g:X^2\to (X/\sim)^2$ given by $g(x,y)=(\pi(x),\pi(y))$ is open. What we claim is that $g(X^2-\sim)=(X/\sim)^2-\Delta_{X/\sim}$. Indeed, if $x\nsim y$ then $\pi(x)\ne\pi(y)$ which tells us that $g\left(X^2-\sim\right)\subseteq (X/\sim)^2-\Delta_{X/\sim}$. That said, if $(\pi(x),\pi(y))\notin\Delta_{X/\sim}$ then $\pi(x)\ne \pi(y)$ so that $x\nsim y$ so that $(x,y)\in X^2-\sim$ and clearly $g(x,y)=(\pi(x),\pi(y))$. Thus, $g(X^2-\sim)=(X/\sim)^2-\Delta_{X/\sim}$ as claimed. But, since $X^2-\sim$ is open by assumption, and $g$ is an open map we have that $(X/\sim)^2-\Delta_{X/\sim}$ is open, and so $\Delta_{X/\sim}$ is closed. This gives us $T_2$ness.