[Math] Why solve polynomial equations

analysislinear algebrapolynomials

Most people learn in linear algebra that its possible to calculate the eigenvalues of a matrix by finding the roots of its characteristic polynomial. However, this method is actually very slow, and while its easy to remember and its possible for a person to use this method by hand, there are many better techniques available (which do not rely on factoring a polynomial).

So I was wondering, why on earth is it actually important to have techniques available to solve polynomial equations? (to be specific, I mean solving over $\mathbb{C}$)

I actually used to be fairly interested in how to do it, and I know a lot of the different methods that people use. I was just thinking about it though, and I'm actually not sure what sort of applications there are for those techniques.

Best Answer

One important consequence of being able to explicitly solve polynomial equations is that it permits great simplifications by linearizing what would otherwise be much more complicated nonlinear phenomena. The ability to factor polynomials completely into linear factors over $\mathbb C$ enables widespread linearization simplifications of diverse problems. An example familiar to any calculus student is the fact that integration of rational functions is much simpler over $\mathbb C$ (vs. $\mathbb R$) since partial fraction decompositions involve at most linear (vs. quadratic) polynomials in the denominator. Analogously, one may reduce higher-order constant coefficient differential and difference equations (i.e. recurrences) to linear (first-order) equations by factoring them as linear operators over $\mathbb C$ (i.e. "operator algebra").

More generally, such simplification by linearization was at the heart of the development of abstract algebra. Namely, Dedekind, by abstracting out the essential linear structures (ideals and modules) in number theory, greatly simplified the prior nonlinear Gaussian theory (based on quadratic forms). This enabled him to exploit to the hilt the power of linear algebra. Examples abound of the revolutionary breakthroughs that this brought to number theory and algebra - e.g. it provided the methods needed to generalize the law of quadratic reciprocity to higher-order reciprocity laws - a longstanding problem that motivated much of the early work in number theory and algebra.