Matrices – Why Multiply a Matrix with Its Transpose?

matricestranspose

This might be a very stupid question, but I do not seem to understand why I would multiple a matrix with its transpose. I am not a mathematician, but I am very interested in understanding the practical usage of equations:

Imagine I have three products sales Apple, Orange and Pear for the last 3 days in a matrix form called A:
$$ A=
\begin{bmatrix}
Apple & Orange & Pear \\
10 & 2 & 5 \\
5 & 3 & 10 \\
4 & 3 & 2 \\
5 & 10 & 5 \\
\end{bmatrix}$$

What will $AA^{\rm T}$ tell me?

I have seen this long answer link: Is a matrix multiplied with its transpose something special?, but I did not get it at all.

I see that a lot of equations use the product $AA^{\rm T}$ and I really hope that someone will give a very simple answer.

Best Answer

There are great answers by fellow members. I would like to visualize just this particular problem. Lets say there are $4$ companies $A$,$B$,$C$ and $D$ and all of them sell three fruits Apples, Oranges and Pears. Because the numbers are less, I will assume that we want to see the daily sales in numbers of all companies.

Create the table for daily sales: $$\begin{bmatrix} &\text {Apples} & \text{Oranges}&\text{Pears} \\\text{Company 1}&10&2&5\\\text{Company 2} &5&3&10\\\text{Company 3} &4&3&2\\\text{Company 4} &5&10&5\\\end{bmatrix}$$

Just ignore the words and look at the numbers. The first row and first column are just for understanding. The numerical values of the table represent your matrix $A$. This table tells you the daily sales of each company for apples, oranges and pears.

$$A=\begin{bmatrix}10 & 2&5 \\5 & 3&10 \\4 & 3&2\\5 & 10&5 \end{bmatrix}$$ If we just write the table in another way, to see just the sales of a particular fruit from all the companies we will write, $$\begin{bmatrix} &\text {Company 1} & \text{Company 2}&\text{Company 3}&\text{Company 4} \\\text{Apples}&10&5&4&5\\\text{Oranges} &2&3&3&10\\\text{Pears} &5&10&2&5\\\end{bmatrix}$$ This can be written as: $$A^T=\begin{bmatrix}10 & 5&4&5 \\2 &3& 3&10 \\5 & 10&2&5\\ \end{bmatrix}$$ Now we keep both the tables together, $$\begin{bmatrix} &\text {Apples} & \text{Oranges}&\text{Pears} \\\text{Company 1}&10&2&5\\\text{Company 2} &5&3&10\\\text{Company 3} &4&3&2\\\text{Company 4} &5&10&5\\\end{bmatrix}\begin{bmatrix} &\text {Company 1} & \text{Company 2}&\text{Company 3}&\text{Company 4} \\\text{Apples}&10&5&4&5\\\text{Oranges} &2&3&3&10\\\text{Pears} &5&10&2&5\\\end{bmatrix}$$ If by some case there is a partnership between two companies say Company A and Company B, then what will be the total fruit sales? $$\text{Total fruit sales for the partnership} = \text{No of total apples + No of total oranges + No of total pears}$$

Total fruit sales for the partnership = Company 1 Apples X Company 2 Apples + Company 1 Oranges X Company 2 Oranges + Company 1 Pears X Company 2 Pears $$\text{Total fruit sales for the partnership} = 10X5 + 2X3 + 5X10=106$$ So the total sales of fruits for the partnership of Company A and Company B is $106$. This is nothing but the second element of the product $AA^T$.

$$AA^T=\begin{bmatrix}10 & 2&5 \\5 & 3&10 \\4 & 3&2\\5 & 10&5 \end{bmatrix}\begin{bmatrix}10 & 5&4&5 \\2 &3& 3&10 \\5 & 10&2&5\\ \end{bmatrix}=\begin{bmatrix}129&106&56&85 \\106&134&49&105 \\56&49&29&60\\ 85&105&60&150\end{bmatrix}$$

What does this product show? This product can be visualized as the total sales chart of each company as well as the total sales of mutual parnterships of companies. $$\begin{bmatrix} &\text {Company 1} & \text{Company 2}&\text{Company 3}&\text{Company 4} \\\text{Company 1}&129&106&56&85\\\text{Company 2} &106&134&49&105\\\text{Company 3} &56&49&29&60\\\text{Company 4} &85&105&60&150\\\end{bmatrix}$$

Crucial points to observe:

  1. The diagonal elements of the matrix $AA^T$ are all just the squared sum of individual companies. For example the first element is the strength of sales of Company 1 and so on.

  2. Each non diagonal element shows the total sales that would result due to the partnership between two companies. For example the second element of $AA^T$ is the total sales produced due to the partnership between Company 1 and Company 2.

  3. The matrix $AA^T$ is symmetric, which can be visualized using the fact that the total sales due to the partnership of Company 1 and Company 2 is same as that of Company 2 and Company 1.

  4. Useful insight from $AA^T$is that check the diagonal elements , whichever is the maximum, you can confirm that Company is stronger in sales. Another useful insight is you can check whether partnership with a particular company is beneficial or not. For example, Company 3 is having the lowest sales individually, so it is beneficial for Company 3 to form a partnership with Company 4 because the total sales would be 60 which is more than double of what Company 3 can have. So, we can check which partnerships would be most beneficial.

  5. Diagonal elements: (A measure of) Individual strengths, Non Diagonal Elements: Partnership strengths.

Hope this helps...