Differential Geometry – Why is the Tangent Bundle Orientable?

differential-geometryfiber-bundlessmooth-manifoldstangent-bundlevector-bundles

Let $M$ be a smooth manifold. How do I show that the tangent bundle $TM$ of $M$ is orientable?

Best Answer

Sorry to resurrect, but we leave a $($detailed$)$ proof here that $TM$ has the structure of an oriented $2n$-manifold, even if the $n$-manifold $M$ is non-orientable.

Let $\{(U_\alpha, \phi_\alpha)\}_{\alpha \in A}$ be a smooth atlas of $M$, and let $V_\alpha = \phi_\alpha(U_\alpha) \subset \mathbb{R}^n$. Then $(\phi_\alpha)_*: TU_\alpha \to TV_\alpha = V_\alpha \times \mathbb{R}^n$ is a homomorphism $($having inverse $(\phi_\alpha^{-1})_*$$)$. Moreover, the sets $TU_\alpha$ cover $TM$ and the transition maps$$t_{\alpha\beta} = (\phi_\alpha)_* \circ \left(\phi_\beta^{-1}\right)_* = \left(\phi_\alpha \circ \phi_\beta^{-1}\right)_*: V_\beta \times \mathbb{R}^n \to V_\alpha \times \mathbb{R}^n$$are orientation preserving. Let $x_1, \dots, x_n$ be coordinates on $V_\beta$, $x_{n+1}, \dots, x_{2n}$ be coordinates on the left copy of $\mathbb{R}^n$, $y_1, \dots, y_n$ be coordinates on $V_\alpha$, and $y_{n+1}, \dots, y_{2n}$ be coordinates on the right copy of $\mathbb{R}^n$. Note that $(y_1, \dots, y_n) = \phi_\alpha\left(\phi_\beta^{-1}(x_1, \dots, x_n)\right)$ does not depend on $x_{n+1}, \dots, x_{2n}$, so the Jacobian matrix $\left({{\partial y_i}\over{\partial x_j}}\right)$ of $t_{\alpha\beta}$ has all zeros in the upper right quadrant. It follows that$$\det\left({{\partial y_i}\over{\partial x_j}}\right)_{i,j = 1}^{2n} = \det\left({{\partial y_i}\over{\partial x_j}}\right)_{i, j = 1}^n \det\left({{\partial y_i}\over{\partial x_j}}\right)_{i, j = n +1}^{2n}.$$The first of these submatrices is the usual Jacobian of $\phi_\alpha \circ \phi_\beta^{-1}$. The second is the Jacobian of the linear transformation $\left(\phi_\alpha \circ \phi_\beta^{-1}\right)_{*,\, (x_1, \dots, x_n)}$. Therefore$$\det\left({{\partial y_i}\over{\partial x_j}}\right)_{i, j = 1}^{2n} = \det\left(\left(\phi_\alpha \circ \phi_\beta^{-1}\right)_{*,\, (x_1, \dots, x_n)}\right)^2 > 0.$$This proves $\{(TU_\alpha, (\phi_\alpha)_*)\}_{\alpha \in A}$ is an oriented atlas for $TM$.