[Math] Why is orthogonal basis important

inner-productslinear algebraorthogonalityvector-spaces

Lets take the $\mathbb{R}^3$ space as example. Any point in the $\mathbb{R}^3$ space can be represented by 3 linearly independent vectors that need not be orthogonal to each other. What is that special quality of orthogonal basis (extending to orthonormal) that we choose them over non-orthogonal basis?

Best Answer

If $\{v_1, v_2, v_3\}$ is a basis for $\mathbb{R}^3$, we can write any $v \in \mathbb{R}^3$ as a linear combination of $v_1, v_2,$ and $v_3$ in a unique way; that is $v = x_1v_2 + x_2v_2+x_3v_3$ where $x_1, x_2, x_3 \in \mathbb{R}$. While we know that $x_1, x_2, x_3$ are unique, we don't have a way of finding them without doing some explicit calculations.

If $\{w_1, w_2, w_3\}$ is an orthonormal basis for $\mathbb{R}^3$, we can write any $v \in \mathbb{R}^3$ as $$v = (v\cdot w_1)w_1 + (v\cdot w_2)w_2 + (v\cdot w_3)w_3.$$ In this case, we have an explicit formula for the unique coefficients in the linear combination.

Furthermore, the above formula is very useful when dealing with projections onto subspaces.


Added Later: Note, if you have an orthogonal basis, you can divide each vector by its length and the basis becomes orthonormal. If you have a basis, and you want to turn it into an orthonormal basis, you need to use the Gram-Schmidt process (which follows from the above formula).

By the way, none of this is restricted to $\mathbb{R}^3$, it works for any $\mathbb{R}^n$, you just need to have $n$ vectors in a basis. More generally still, it applies to any inner product space.