Golden Ratio – Why Does This Process Map Every Fraction to the Golden Ratio?

golden ratiosequences-and-series

Start with any positive fraction $\frac{a}{b}$.
First add the denominator to the numerator: $$\frac{a}{b} \rightarrow \frac{a+b}{b}$$
Then add the (new) numerator to the denominator:
$$\frac{a+b}{b} \rightarrow \frac{a+b}{a+2b}$$
So $\frac{2}{5} \rightarrow \frac{7}{5} \rightarrow \frac{7}{12}$.

Repeating this process appears to map every fraction to
$\phi$ and $\frac{1}{\phi}$:

$$
\begin{array}{ccccccccccc}
\frac{2}{5} & \frac{7}{5} & \frac{7}{12} & \frac{19}{12} & \frac{19}{31} & \frac{50}{31} & \frac{50}{81} & \frac{131}{81} & \frac{131}{212} & \frac{343}{212} & \frac{343}{555} \\
0.4 & 1.40 & 0.583 & 1.58 & 0.613 & 1.61 & 0.617 & 1.62 & 0.618 & 1.62 & 0.618 \\
\end{array}
$$

Another example:
$$
\begin{array}{ccccccccccc}
\frac{11}{7} & \frac{18}{7} & \frac{18}{25} & \frac{43}{25} & \frac{43}{68} & \frac{111}{68} & \frac{111}{179} & \frac{290}{179} & \frac{290}{469} & \frac{759}{469} & \frac{759}{1228} \\
1.57143 & 2.57 & 0.720 & 1.72 & 0.632 & 1.63 & 0.620 & 1.62 & 0.618 & 1.62 & 0.618 \\
\end{array}
$$

Q. Why?

Best Answer

Instead of representing $\frac{a}{b}$ as a fraction, represent it as the vector $\left( \begin{array}{c} a \\ b \end{array} \right)$.

Then, all you are doing to generate your sequence is repeatedly multiplying by the matrix $\left( \begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right)$. One of the eigenvectors of this matrix is $\left( \begin{array}{c} \frac{\sqrt{5}-1}{2} \\ 1 \end{array} \right)$, which has a slope equal to the "golden ratio".

This is a standard example of a linear discrete dynamical system, and asymptotic convergence to an eigenvector is one of the typical things that can happen. You can also guess at the long-term behavior of the system by looking at its vector field.

https://kevinmehall.net/p/equationexplorer/#%5B-100,100,-100,100%5D&v%7C(x+y)i+(x+2y)j%7C0.1

In this case you see everything that starts in the first quadrant diverges to infinity along the path of the eigenvector I mentioned before. For your sequence, you started at $\left( \begin{array}{c} 2 \\ 5 \end{array} \right)$, which lies in the first quadrant.

Side note: There is nothing particularly special about the golden ratio, the matrix above, or the starting point of $\left( \begin{array}{c} 2 \\ 5 \end{array} \right)$ for this sequence. You can change the starting point to be in the negative quadrant if you want to diverge in the opposite direction, and you can change the matrix if you want to diverge along a differently sloped eigenvector.

Related Question