[Math] Why can a circle be described by an equation but not by a function

algebra-precalculusfunctions

In high-school math functions always looked to me just like glorified equations. The only time I saw a meaningful difference was when we covered the equation of a circle and I realized that an equation can describe a circle but a function cannot (a function can describe only one half of the circle).

So what is the difference between a function and an equation that leads to this, in formal terms?

Best Answer

Well, a circle can be described by a function, just not in the sense that you may be familiar with. If you are looking at a function that describes a set of points in Cartesian space by mapping each $x$-coordinate to a $y$-coordinate, then a circle cannot be described by a function because it fails what is known in High School as the vertical line test.

A function, by definition, has a unique output for every input. However, for almost all points on a circle, there is another point with the same $x$-coordinate. So, you would need your function to give two different $y$-coordinates for certain inputs, which is not allowed.

However, there is no rule that the input of a function has to be an $x$-coordinate or that the output has to be a $y$-coordinate, so we can define other functions that describle a circle. In more formal terms, the domain and codomain of a function do not have to be $\Bbb{R}$. For example, we can have a function that outputs an ordered pair (that is, codomain of $\Bbb{R}\times\Bbb{R}$). Then, $$f(t)=(\sin t,\cos t)$$ outputs the unit circle when $0\le t<2\pi$. We could also describe the points in space in a different way, using polar coordinates. Here we use the counter-clockwise angle from the positive $x$-axis, $\theta$, and the distance from the origin, $r$, to identify a point. Using this system, we can easily describe the unit circle as $(\theta,f(\theta))$, where $f(\theta)=1$ and $0\le\theta<2\pi$.