[Math] When can two linear operators on a finite-dimensional space be simultaneously Jordanized

jordan-normal-formlinear algebralinear-transformations

IN a comment to Qiaochu's answer here it is mentioned that two commuting matrices can be simultaneously Jordanized (sorry that this sounds less appealing then "diagonalized" 😛 ), i.e. can be brought to a Jordan normal form by the same similarity transformation. I was wondering about the converse – when can two linear operators acting on a finite-dimensional vector space (over an algebraically closed field) be simultaneously Jordanized? Unlike the case of simultaneous diagonalization, I don't think commutativity is forced on the transformations in this case, and I'm interested in other natural conditions which guarantee that this is possible.

EDIT: as Georges pointed out, the statements that two commuting matrices are simultaneously Jordanizable is in fact wrong. Nevertheless, I am still interested in interesting conditions on a pair of operators which ensures a simultaneous Jordanization (of course, there are some obvious sufficient conditions, i.e. that the two matrices are actually diagonalizable and commute, but this is not very appealing…)

Best Answer

The comment you mention does not seem to be correct: in reality, over any field there exist commuting matrices which cannot be simultaneously Jordanized. Here is an example.

Let $n\geq 3$ and let $J_n$ be the $n$-th Jordan block, the $n\times n$ matrix whose entries are all $0$ except just above the diagonal where the $n-1$ entries equal 1.
I claim that although $J_n$ obviously commute with its square $J_n^2$, these matrices cannot be simultaneously Jordanized.
Indeed any matrix $P$ Jordanizing $J_n$ will satisfy $$P^{-1}J_nP=J_n$$ because of the uniqueness of Jordan forms.
But this will force (by squaring that equality) $$P^{-1}J_n^2P=J_n^2$$ which is not in Jordan form.
Hence no matrix $P$ can simultaneously Jordanize both $J_n$ and $J_n^2$.