[Math] Weak convergence in $H^1_0$ and $L^2$

functional-analysissobolev-spaces

Let $\Omega$ be an open bounded set in $R^n$ with smooth boundary. Suppose that $u_n$ is a sequence in $H^1_0(\Omega)$ which converges weakly to $u$ in the sense that for all $y \in H^1_0(\Omega)$

$$\int_\Omega \nabla u_n\cdot \nabla y \to \int_\Omega \nabla u\cdot \nabla y$$

Then, why is it true that $u_n$ converges to $u$ weakly in $L^2(\Omega)$, that is,

$$\int_\Omega u_n\cdot y \to \int_\Omega u\cdot y$$ for all $y \in L^2(\Omega)$?

Best Answer

Let $f \in L^2(\Omega)$ be given. Then, there is a unique $w \in H_0^1(\Omega)$ with $$\int_\Omega \nabla w \cdot \nabla y \, \mathrm{d}x = \int_\Omega f \cdot y\, \mathrm{d}x$$ for all $y \in H_0^1(\Omega)$. (Note that $w$ is essentially the Riesz representative of the functional $y \mapsto \int_\Omega f \cdot y \, \mathrm{d}x$.)

Then, $$ \int_\Omega u_n \cdot f \, \mathrm{d}x = \int_\Omega \nabla u_n \cdot \nabla w\,\mathrm{d}x \to \int_\Omega \nabla u \cdot \nabla w\,\mathrm{d}x = \int_\Omega u \cdot f \, \mathrm{d}x.$$

Related Question