[Math] Volume element in spherical coordinates

spherical coordinatesvolume

In spherical coordinates, we have

$ x = r \sin \theta \cos \phi $;

$ y = r \sin \theta \sin \phi $; and

$z = r \cos \theta $; so that

$dx = \sin \theta \cos \phi\, dr + r \cos \phi \cos \theta \,d\theta ā€“ r \sin \theta \sin \phi \,d\phi$;

$dy = \sin \theta \sin \phi \,dr + r \sin \phi \cos \theta \,d\theta + r \sin \theta \cos \phi \,d\phi$; and

$dz = \cos \theta\, dr ā€“ r \sin \theta\, d\theta$

The above is obtained by applying the chain rule of partial differentiation.

But in a physics book Iā€™m reading, the authors define a volume element $dv = dx\, dy\, dz$, which when converted to spherical coordinates, equals $r \,dr\, d\theta r \sin\theta \,d\phi$. How do the authors obtain this form?

Best Answer

$dV=dxdydz=|\frac{\partial(x,y,x)}{\partial(r,\theta,\phi)}|drd\theta d\phi$