Calculus – Evaluating Complex Indeterminate Form Limit

alternative-proofcalculuslimitslimits-without-lhopitalproof-verification

Here is problem:

$$\lim_{x \to \infty} \left(\sqrt{x^2+2x+3} -\sqrt{x^2+3}\right)^x$$

The solution I presented in the picture below was made by a Mathematics Teacher

enter image description here

I tried to solve this Limit without using derivative (L'hospital) and Big O notation. Although I get the answer, I don't know if the technique I'm using definitely correct.

And here is my method:

$$\begin{align*}\lim_{x \to \infty} \left(\sqrt{x^2+2x+3} -\sqrt{x^2+3}\right)^x&=\lim_{x \to \infty} \left(\frac {2x}{\sqrt{x^2+2x+3} +\sqrt{x^2+3}}\right)^x\\&=\lim_{x \to \infty}\frac{1}{ \left(\frac {\sqrt{x^2+2x+3} +\sqrt{x^2+3}}{2x}\right)^x}\end{align*}$$

Then, I define a new function here

$$y(x)=\sqrt{x^2+2x+3} +\sqrt{x^2+3}-2x-1$$

We have

$$\begin{align*}
\lim _{x\to\infty} y(x)&=\lim_{x \to \infty}\sqrt{x^2+2x+3} +\sqrt{x^2+3}-2x-1\\
&=\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(x+1))+(\sqrt{x^2+3}-x)\\
&=\lim_{x \to \infty}\frac{2}{\sqrt{x^2+2x+3}+x+1}+ \lim_{x \to \infty}\frac{3}{\sqrt{x^2+3}+x}\\
&=0.
\end{align*}$$

This implies that
$$\lim_{x \to \infty}\frac{2x}{y(x)+1}=\infty $$

Therefore,

$$\begin{align*}
\lim_{x \to \infty}\frac{1}{ \left(\frac {\sqrt{x^2+2x+3} +\sqrt{x^2+3}}{2x}\right)^x}&=\lim_{x \to\infty} \frac{1}{ \left(\frac{y(x)+2x+1}{2x} \right)^x}\\
&=\lim_{x \to\infty} \frac{1}{ \left(1+\frac{y(x)+1}{2x} \right)^x}\\
&=\lim_{x \to \infty}\frac{1}{\left( \left( 1+\frac{1}{\frac{2x}{y(x)+1}}\right)^{\frac{2x}{y(x)+1}}\right)^{\frac{y(x)+1}{2}}}\\
&
\end{align*}$$

Here, we define two functions:
$$f(x)=\left( 1+\frac{1}{\frac{2x}{y(x)+1}}\right)^{\frac{2x}{y(x)+1}},\quad
g(x)=\frac{y(x)+1}{2}.
$$

We deduce that,
$$
\lim_{x\to\infty} f(x)=e>0,\quad \lim_{x\to\infty} g(x)=\frac 12>0.
$$

Thus, the limit $\lim_{x\to\infty} f(x)^{g(x)} $ exists and is finite.

Finally we get,

$$\begin{align*}
\lim_{x \to \infty}\frac{1}{\left( \left( 1+\frac{1}{\frac{2x}{y(x)+1}}\right)^{\frac{2x}{y(x)+1}}\right)^{\frac{y(x)+1}{2}}}
&=\frac{1}{\lim_{x \to \infty}\left( \left( \left( 1+\frac{1}{\frac{2x}{y(x)+1}}\right)^{\frac{2x}{y(x)+1}}\right)^{\frac{y(x)+1}{2}}\right)}\\
&=\frac{1}{\left(\lim_{x\to\infty} \left( 1+\frac{1}{\frac{2x}{y(x)+1}} \right)^{\frac{2x}{y(x)+1}}\right)^{ \lim_{x\to\infty} \frac{y(x)+1}{2}}}\\
&=\frac {1}{e^{\frac12}}=\frac{\sqrt e}{e}.\\&&
\end{align*}$$

Is the method I use correct?

I have received criticisms against my work. What can I do to make the method I use, rigorous? What are the points I missed in the method?

Thank you!

Best Answer

Your math looks good! I'd maybe just an extra step here and there to make it clear what your doing. Things like showing that you're multiplying by conjugates and maybe a change of variables, say $$z = \frac{2x}{y(x)+1},$$ near the end so it's a bit clearer where the $e$ comes from. Otherwise everything looks good! This is a tricky limit, I really like your solution.

Related Question