Linear Algebra – Is There a Vector Space That Cannot Be an Inner Product Space?

inner-productslinear algebravector-spaces

Quick question: Can I define some inner product on any arbitrary vector space such that it becomes an inner product space? If yes, how can I prove this? If no, what would be a counter example? Thanks a lot in advance.

Best Answer

I'm assuming the ground field is ${\mathbb R}$ or ${\mathbb C}$, because otherwise it's not clear what an "inner product space" is.

Now any vector space $X$ over ${\mathbb R}$ or ${\mathbb C}$ has a so-called Hamel basis. This is a family $(e_\iota)_{\iota\in I}$ of vectors $e_\iota\in X$ such that any $x\in X$ can be written uniquely in the form $x=\sum_{\iota\in I} \xi_\iota\ e_\iota$, where only finitely many $\xi_\iota$ are $\ne 0$. Unfortunately you need the axiom of choice to obtain such a basis, if $X$ is not finitely generated.

Defining $\langle x, y\rangle :=\sum_{\iota\in I} \xi_\iota\ \bar\eta_\iota$ gives a bilinear "scalar product" on $X$ such that $\langle x, x\rangle>0$ for any $x\ne0$. Note that in computing $\langle x,y\rangle$ no question of convergence arises.

It follows that $\langle\ ,\ \rangle$ is an inner product on $X$, and adopting the norm $\|x\|^2:=\langle x,x\rangle$ turns $X$ into a metric space in the usual way.