[Math] Using Simpson’s Rule to approximate $\int_0^3{\sqrt{9-x^2}dx}$

calculusintegrationnumerical methods

I have to use Simpson's rule:

$$\int_a^b f(x) \, dx \approx S_n = \frac{1}{3}h[f(a)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+\cdots+4f(x_{n-1})+f(b)]$$

when $n=6$ to approximate the integral:

$$\int_0^3{\sqrt{9-x^2}dx}$$

to four decimal places.

I've gotten $$f(0) = 3$$
$$ 4f\left(\frac{1}{2}\right)=11.831$$
$$2f(1)=5.6569$$
$$4f\left(\frac{3}{2}\right)=10.3923$$
$$2f(2)=4.4721$$
$$4f\left(\frac{5}{2}\right)=6.6332$$
$$f(3)=0$$
and then..
$$\int_0^3{\sqrt{9-x^2} \, dx}\approx S_6 = \left (\frac{1}{3}\right )\left(\frac{1}{2}\right )\left (41.9857\right ) = 6.9976 $$

Did I do this right and is this the correct answer?

Best Answer

Since $h=\dfrac {b-a}n$ and $a=0, b=3$:

$$\int_a^b{f(x)dx}\approx S_n = \frac{1}{3}h[f(a)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+4f(x_{n-1})+f(b)]\\=\frac 16 ( 3+ 11.8321+ 5.6568+10.3923+4.4721+6.6332+0)\\=6.9977$$

Related Question