[Math] Using only the field axioms of real numbers prove that $(-1)(-1) = 1$

axiomsproof-writingreal numbers

Using only the field axioms of real numbers prove that $(-1)(-1) = 1$
(1) I start with an obvious fact:$$0 = 0$$
(2) Add $(-1)$ to both sides of the equation:
$$0 + (-1) = 0+ (-1)$$
(3) Zero is the neutral element of addition
$$(-1) = (-1)$$
(4) One is the neutral element of multiplication
$$(-1)(1) = (-1)$$
$$(-1)(1+(-1)+1)=(-1)$$
(5) Multiplication is distributive under addition
$$(-1)(1)+(-1)(-1)+(-1)(1) = (-1)$$
(6) One is the neutral element of multiplication
$$(-1)+(-1)(-1)+(-1)=(-1)$$
(7) Add $1$ to both sides
$$(-1)+(-1)(-1)+(-1)+1=(-1)+1$$
(8) Negative one is the additive inverse of one
$$(-1)+(-1)(-1) +0 = 0$$
(9) Add 1 to both sides
$$1 + (-1) + (-1)(-1)+0 = 0 + 1$$
$$0 + (-1)(-1) + 0 = 0 + 1$$
(10) Zero is the neutral element of addition
$$(-1)(-1) = 1$$
Is my proof good? Should I change something?

Best Answer

What do you think of this?

Lemma. In a field $a\cdot 0=0\cdot a=0$, for any $a\in\mathbb{F}$

proof

$a\cdot 0=a\cdot (1+(-1))=a+(-a)=0$

$0\cdot a=a\cdot 0=0$ for the commutativity of product

end proof

end lemma

main proof

$1=1\\ 1+0\cdot 0=1\\ 1+(1-1)(1-1)=1\\ 1+1\cdot 1+1(-1)-1(1)+(-1)(-1)\\ 1+1-1-1+(-1)(-1)=1\\ 0+0+(-1)(-1)=1\\ (-1)(-1)=1$