[Math] Using Lagrange for finding Marshallian Demand

calculuseconomicslagrange multiplierlinear algebramultivariable-calculus

I want to find the marshallian demand function for the user function $u(x_1,x_2) = x_1^ax_2^{1-a}$ where $a \in (0,1)$.
This is what I have so far:

$$L = x_1^ax_2^{1-a} – \lambda(p_1x_1 + p_2x_2 – y)$$
part. derivation with respect to $x_1$:
$$\frac{\delta L}{\delta x_1} = ax_1^{a-1}x_2^{1-a} – \lambda p_1 = 0$$
part. derivation with respect to $x_2$:
$$\frac{\delta L}{\delta x_2} = x_1^a(1-a)x_2^{-a} – \lambda p_2 = 0$$
rearrange derivation 1:
$$ax_1^{a-1}x_2^{1-a} = \lambda p_1$$
solve for $\lambda$
$$\frac{ax_1^{a-1}x_2^{1-a}}{p_1} = \lambda$$
rearrange derivation 2:
$$x_1^a(1-a)x_2^{-a} = \lambda p_2 $$
solve for $\lambda$
$$\frac{x_1^a(1-a)x_2^{-a}}{p_2} = \lambda$$
equalizing both equations:
$$\frac{ax_1^{a-1}x_2^{1-a}}{p_1} = \frac{x_1^a(1-a)x_2^{-a}}{p_2}$$
Dividing by the denominator:
$$(ax_1^{a-1}x_2^{1-a})p_2 = (x_1^a(1-a)x_2^{-a})p_1$$

I'm not sure, whether I'm on the right path. My final equation looks a bit scary. I would need to solve for $x_1$ at first, then put the result into the budget constraint.
As you can see, it would be very time consuming.

Is there an easier solution?

Best Answer

A clever way to solve this kind of problems (with a Cobb-Douglas function) is as follows:

$ax_1^{a-1}x_2^{1-a} - \lambda p_1 = 0$

$x_1^a(1-a)x_2^{-a} - \lambda p_2 = 0$

Bringing the terms involving $\lambda$ to the RHS:

$ax_1^{a-1}x_2^{1-a} = \lambda p_1 $

$x_1^a(1-a)x_2^{-a} = \lambda p_2 $

Dividing the first equation by the second equation:

$\frac{ax_1^{a-1}x_2^{1-a}}{x_1^a(1-a)x_2^{-a}}=\frac{\lambda p_1}{\lambda p_2}$

$\lambda $ can be cancelled. In addition you can cancel out $x_1^{\alpha}$ and $x_2^{-\alpha}$.

$\frac{ax_1^{-1}x_2^{1}}{(1-a)}=\frac{ p_1}{ p_2}$

$\frac{ax_2^{1}}{(1-a)x_1^{1}}=\frac{ p_1}{ p_2}$

The exponents are not needed anymore.

$\frac{ax_2^{}}{(1-a)x_1^{}}=\frac{ p_1}{ p_2}$

$\color{blue}{***}$

Solving for $x_2p_2$

$x_2p_2=\frac{p_1(1-\alpha)}{\alpha}x_1$

Inserting the term for $x_2p_2$ in the budget restriction:

$y=x_1p_1+p_2x_2$

$y=x_1p_1+\frac{p_1(1-\alpha)}{\alpha}x_1$

Factoring out $x_1$

$y=x_1\left( p_1+\frac{p_1(1-\alpha)}{\alpha} \right)\Rightarrow y=x_1p_1+\frac{x_1p_1}{\alpha} -x_1\frac{p_1\alpha}{\alpha} $

The third term is the negative of the first term:

$y=\frac{x_1p_1}{\alpha} \Rightarrow x_1=\alpha\frac{y}{p_1} $

For a given y and a given $p_2$ the maschallian demand function is $x_1(p_1,\overline{p}_2,\overline{y})=\alpha\frac{\overline y}{p_1} $

The same can be done for $x_2(p_2,\overline{p}_1,\overline{y})$. Repeat the similar steps after $\color{blue}{***}$.

Related Question