[Math] Using differentiation under integral sign to calculate $\int^{\pi/2}_0\frac{\log(1+a\sin\phi)}{\sin\phi}d\phi$

calculusdefinite integralsimproper-integralsintegration

I want to calculate the integral $$\int^{\pi/2}_0\frac{\log(1+\sin\phi)}{\sin\phi}d\phi$$ using differentiation with respect to parameter in the integral $$\int^{\pi/2}_0\frac{\log(1+a\sin\phi)}{\sin\phi}d\phi$$

I know that I have to solve from differentiate under the integral and I must use a suitable substitution for integrands involving trigonometric functions but I can't complete the solution. Could you help me?

Best Answer

Let's consider the integral

\begin{align}I(\alpha)&=\int_0^{\Large\frac{\pi}{2}}\frac{\ln\,(1+\cos\alpha\,\sin\,\phi)}{\sin\,\phi}\;d\phi\quad\Rightarrow\quad\phi\mapsto \frac{\pi}{2}-\phi\\ &=\int_0^{\Large\frac{\pi}{2}}\frac{\ln\,(1+\cos\alpha\,\cos\,\phi)}{\cos\,\phi}\;d\phi, \qquad 0 < \alpha < \pi.\end{align}

Differentiating $I(\alpha)$ with respect to $\alpha$, we have

\begin{align} {I}'(\alpha) &= \int_0^{\Large\frac{\pi}{2}} \frac{\partial}{\partial\alpha} \left(\frac{\ln(1 + \cos\alpha \cos \phi)}{\cos \phi}\right)\,d\phi \\ &=-\int_0^{\Large\frac{\pi}{2}}\frac{\sin \alpha}{1+\cos \alpha \cos \phi}\,d\phi \\ &=-\int_0^{\Large\frac{\pi}{2}}\frac{\sin \alpha}{\left(\cos^2 \frac{\phi}{2}+\sin^2 \frac{\phi}{2}\right)+\cos \alpha\,\left(\cos^2\,\frac{\phi}{2}-\sin^2 \frac{\phi}{2}\right)}\,d\phi \\ &=-\frac{\sin\alpha}{1-\cos\alpha} \int_0^{\Large\frac{\pi}{2}} \frac{1}{\cos^2\frac{\phi}{2}}\frac{1}{\left[\left(\frac{1+\cos \alpha}{1-\cos \alpha}\right) +\tan^2 \frac{\phi}{2} \right]}\,d\phi \\ &=-\frac{2\,\sin\alpha}{1-\cos\alpha} \int_0^{\Large\frac{\pi}{2}}\,\frac{\frac{1}{2}\,\sec^2\,\frac{\phi}{2}}{\left[\,\left(\dfrac{2\,\cos^2\,\frac{\alpha}{2}}{2\,\sin^2\,\frac{\alpha}{2}}\right) + \tan^2\,\frac{\phi}{2} \right]} \,d\phi \\ &=-\frac{2\left(2\,\sin\,\frac{\alpha}{2}\,\cos\,\frac{\alpha}{2}\right)}{2\,\sin^2\,\frac{\alpha}{2}}\,\int_0^{\Large\frac{\pi}{2}}\,\frac{1}{\left[\left(\dfrac{\cos \frac{\alpha}{2}}{\sin\,\frac{\alpha}{2}}\right)^2\,+\,\tan^2\,\frac{\phi}{2}\,\right]}\,d\left(\tan\,\frac{\phi}{2}\right)\\ &=-2\cot \frac{\alpha}{2}\,\int_0^{\Large\frac{\pi}{2}}\,\frac{1}{\left[\,\cot^2\,\frac{\alpha}{2} + \tan^2\,\frac{\phi}{2}\,\right]}\,d\left(\tan \frac{\phi}{2}\right)\,\\ &=-2\,\left.\tan^{-1} \left(\tan \frac{\alpha}{2} \tan \frac{\phi}{2} \right) \right|_0^{\Large\frac{\pi}{2}}\\ &=-\alpha \end{align}

Therefore:

$$I(\alpha) = C - \frac{\alpha^2}{2}$$

However by definition, $I\left(\frac{\pi}{2}\right) = 0$, hence $C = \dfrac{\pi^2}{8}$ and

$$I(\alpha) = \frac{\pi^2}{8}-\frac{\alpha^2}{2}.$$

The integral we want to evaluate is

$$I(0) = \int_0^{\Large\frac{\pi}{2}}\frac{\ln\,(1+\sin\,\phi)}{\sin\,\phi}\;d\phi=\frac{\pi^2}{8}.$$