Unique Factorization Domain That is Not a Principal Ideal Domain

abstract-algebraring-theory

Let $c$ be an integer, not necessarily positive and not a square. Let $R=\mathbb{Z}[\sqrt{c}]$
denote the set of numbers of the form $$a+b\sqrt{c}, a,b \in \mathbb{Z}.$$
Then $R$ is a subring of $\mathbb{C}$ under the usual addition and multiplication.

My question is: if $R$ is a UFD (unique factorization domain), does it follow that
it is also a PID (principal ideal domain)?

Best Answer

Yes, because (quadratic) number rings are easily shown to have dimension at most one (i.e. every nonzero prime ideal is maximal). But $\rm PID$s are precisely the $\rm UFD$s which have dimension $\le 1.\, $ Below is a sketch of a proof of this and closely related results.

Theorem $\rm\ \ TFAE\ $ for a $\rm UFD\ D$

$(1)\ \ $ prime ideals are maximal if nonzero, $ $ i.e. $\rm\ dim\,\ D \le 1$
$(2)\ \ $ prime ideals are principal
$(3)\ \ $ maximal ideals are principal
$(4)\ \ \rm\ gcd(a,b) = 1\, \Rightarrow\, (a,b) = 1,\, $ i.e. $ $ coprime $\Rightarrow$ comaximal
$(5)\ \ $ $\rm D$ is Bezout, i.e. all ideals $\,\rm (a,b)\,$ are principal.
$(6)\ \ $ $\rm D$ is a $\rm PID$

Proof $\ $ (sketch of $\,1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6 \Rightarrow 1)\ $ where $\rm\,p_i,\,P\,$ denote primes $\neq 0$

$(1\Rightarrow 2)$ $\rm\ \ p_1^{e_1}\cdots p_n^{e_n}\in P\,\Rightarrow\,$ some $\rm\,p_j\in P\,$ so $\rm\,P\supseteq (p_j)\, \Rightarrow\, P = (p_j)\:$ by dim $\le1$
$(2\Rightarrow 3)$ $ \ $ max ideals are prime, so principal by $(2)$
$(3\Rightarrow 4)$ $\ \rm \gcd(a,b)=1\,\Rightarrow\,(a,b) \subsetneq (p) $ for all max $\rm\,(p),\,$ so $\rm\ (a,b) = 1$
$(4\Rightarrow 5)$ $\ \ \rm c = \gcd(a,b)\, \Rightarrow\, (a,b) = c\ (a/c,b/c) = (c)$
$(5\Rightarrow 6)$ $\ $ Ideals $\neq 0\,$ in Bezout UFDs are generated by an elt with least #prime factors
$(6\Rightarrow 1)$ $\ \ \rm (d) \supsetneq (p)$ properly $\rm\Rightarrow\,d\mid p\,$ properly $\rm\,\Rightarrow\,d\,$ unit $\,\rm\Rightarrow\,(d)=(1),\,$ so $\rm\,(p)\,$ is max

Remark $ $ Examples of non-PID UFDs are easy in polynomial rings: if $D$ is a non-field domain then it has a nonzero nonunit $d$ so by here the ideal $(d,x)$ is not principal.