[Math] Uniformly continuous homeomorphism from open set to $\mathbb{R}^n$.

multivariable-calculusuniform-continuity

Let $U \subset \mathbb{R}^n$ be an open set. Suppose that the map $h:U \to \mathbb{R}^n$ is a homeomorphism from $U$ onto $\mathbb{R}^n$, which is uniformly continuous. Prove $U = \mathbb{R}^n$.

My first attempt guided by intuition was to look at covering $\mathbb{R}^{n}$ by balls of radius $=\frac{1}{n}$ and conclude something forwarding to contradiction by looking at inverse-image of such covering, but I cannot see it for now.

Best Answer

Here's a sketch of another argument along the line of Daniel Fischer's.

By the connectedness of $\mathbb{R}^n$, it suffices to show $U$ is closed. So suppose $x_n \in U$ and $x_n \to x$. Then $\{x_n\}$ is Cauchy, and it follows from the uniform continuity that $\{f(x_n)\}$ is Cauchy as well. $\mathbb{R}^n$ is complete, so $f(x_n)$ converges to some $y \in \mathbb{R}^n$. By the continuity of $f^{-1}$, we have $x_n = f^{-1}(f(x_n)) \to f^{-1}(y)$ so $x = f^{-1}(y)$. In particular, $x \in U$.

This would work just as well if we replaced $\mathbb{R}^n$ by another connected complete metric space.