General Topology – Understanding Relation Between Quotient Space and S1

general-topology

There is this example at the Wikipedia article on Quotient spaces (QS):

Consider the set $X = \mathbb{R}$ of all real numbers with the ordinary topology, and write $x \sim y$ if and only if $x−y$ is an integer. Then the quotient space $X/\sim$ is homeomorphic to the unit circle $S^1$ via the homeomorphism which sends the equivalence class of $x$ to $\exp(2πix)$.

I understand relations, equivalence relation and equivalence class but quotient space is still too abstract for me. This seems like a simple enough example to begin with.

I understand (sort of) the definition but I can't visualize. And by this example and others, there is a lot of visualizing going on here! torus, circles etc.

Best Answer

The quotient space $Y = X / \sim$ as a set is just the set of equivalence classes of $X$ under $\sim$, so the set $\{ [x]: x \in \mathbb{R} \} $ in your case.

The equivalence class of a number $x$ is just (in your case) the set $\{ x+n : n \in \mathbb{Z} \}$. Now we need a topology. The standard topology that we take on $Y$ is all subsets $O$ of $Y$ (where points in $Y$ are "really" subsets of $X$, the equivalence classes) such that $q^{-1}[O]$ is open in the topology of $X = \mathbb{R}$. Here $q$ is the map that sends $x$ to its class $[x]$ in $Y$, the so-called quotient map. This is called the quotient topology on $Y$, and as you see it assumes you have a topology on $X$ already, and we give $Y$ the largest topology possible to still have $q$ continuous. (The smallest one would always be the indiscrete topology, which is not very interesting, hence the other "natural" choice.)

Now, if we have a function $f$ from $Y$, the quotient space in the quotient topology, to any space $Z$, then $f$ is continuous iff $f \circ q$ is continuous as a function from $X$ to $Z$: one way is clear, as the composition of continuous maps is continuous, and for the other side, if $O$ is open in $Z$, by definition $f^{-1}[O]$ is open in $Y$ iff $q^{-1}[f^{-1}[O]]$ is open in $X$, and this set equals $(f \circ q)^{-1}[O]$ which is open, as by assumption $f \circ q$ is continuous.

Now, consider the map $f$ that sends the class $[x]$ to the point $e^{2\pi ix}$ in $\mathbb{S}^1$, the unit circle. This is well-defined: if $x'$ were another representative of $[x]$, then $x \sim x'$ and thus $x - x'$ is an integer and so $f(x') = f(x)$. It is continuous, as $f \circ q$ is just the regular map sending $x$ to $e^{2\pi ix}$, and this is even differentiable etc. It is clearly surjective and injective because the only way $[x]$ and $[y]$ will have the same value is when $2 \pi ix - 2 \pi i y$ is an integer multiple of $2 \pi i$, which happens iff $x - y$ is an integer. One can also check that $q[X] = q[[0,1]]$ and by continuity of $q$ we have that $Y$ is compact. This makes (with $\mathbb{S}^1$ Hausdorff) the map $f$ a homeomorphism, by standard theorems.

We could also have achieved this as the quotient of $[0,1]$ under the equivalence relation that has exactly one non-trivial class, namely $\{0,1\}$. This is more intuitive, as we then glue together (consider as one point) just the points $0$ and $1$, and this geometrically gives a circle. In your example (which is a nice so-called covering map, and a group homomorphism as well) we glue a lot more points together, but all classes are now similar: just shifted versions of a point by an integer. We sort of wrap the interval $[0,1)$ infinitely many times over itself.

Related Question