[Math] Understanding Proof of Poisson Summation Formula

fourier analysisharmonic-analysispoisson-summation-formula

Consider a proof from a textbook on Harmonic Analysis:

enter image description here

Note that $\mathcal{S}(ℝ)$ denotes the Schwartz Space.

Question 1: Why does the top left formula in the proof start out as:

$$
\int_0^1 \left( \sum_{m ∈ ℤ} \phi(x+m) \right) \mathrm{e}^{-2 \pi i n x} \,\mathrm{d}x?
$$

Shouldn't the integrand be $\int_{-\infty}^{\infty}$?

Question 2: What justifies the leap from

$$
\sum_{m ∈ ℤ} \int_0^1 \phi(x+m) \mathrm{e}^{-2 \pi i n x} \,\mathrm{d}x = \sum_{m ∈ ℤ} \int_m^{m+1} ϕ(y) \mathrm{e}^{-2 \pi i n y} \,\mathrm{d}y ?
$$

Best Answer

Question 1: Define the function $f$ by $$ f(x) := \sum_{m\in\mathbb{Z}} \phi(x+m). $$ Observe that $$ f(x+1) = \sum_{m\in\mathbb{Z}} \phi((x+1)+m) = \sum_{m\in\mathbb{Z}} \phi( x + (m+1) ) = \sum_{m'\in\mathbb{Z}} \phi(x+m') = f(x), $$ where $m' = m+1$. Thus $f$ is a $1$-periodic function. Since $f$ is a $1$-periodic function, we may compute its $n$-th Fourier coefficient using the usual integration, i.e. $$ \hat{f}(n) = \int_{0}^{1} f(x) \mathrm{e}^{-2\pi inx}\,\mathrm{d}x= \int_{0}^{1} f(x) \mathrm{e}^{-2\pi inx}\,\mathrm{d}x = \int_{0}^{1} \sum_{m\in\mathbb{Z}} \phi(x+m) \mathrm{e}^{-2\pi inx}\,\mathrm{d}x, $$ which answers your first question.

Question 2: This is a fairly straight-forward change of variables. Let $y = x+m$. Then (using the usual shorthand) $\mathrm{d}y = \mathrm{d}x$, which gives us \begin{align} \sum_{m\in\mathbb{Z}} \int_{0}^{1} \phi(x+m) \mathrm{e}^{-2\pi inx} \,\mathrm{d}x &= \sum_{m\in\mathbb{Z}} \int_{m}^{m+1} \phi(y) \mathrm{e}^{-2\pi in(y-m)} \,\mathrm{d}y && (\text{change of variables}) \\ &= \sum_{m\in\mathbb{Z}} \int_{m}^{m+1} \phi(y)\, \mathrm{e}^{-2\pi iny}\mathrm{e}^{2\pi inm}\, \mathrm{d}y \\ &= \sum_{m\in\mathbb{Z}} \int_{m}^{m+1} \phi(y) \mathrm{e}^{-2\pi iny}\, \mathrm{d}y. && (\text{since $\mathrm{e}^{2\pi ik} = 1 \forall k\in\mathbb{Z}$}) \end{align} This seems to answer your second question.

Related Question