[Math] Trying to derive an inverse trigonometric function

calculustrigonometry

I'd like to know how to derive these functions (I know the answers, I want to know how to get there)
\begin{align*}
f(x) &= \arcsin\left(\frac{x}{3}\right)\\
f(x) &= \arccos(2x+1)\\
f(x) &= \arctan(x^2)\\
f(x) &= \mathrm{arcsec}(x^7)\\
\end{align*}
etc.

Best Answer

The formulas you need are the derivatives of $\arcsin(u)$, $\arccos(u)$, $\arctan(u)$, $\mathrm{arcsec}(u)$, and presumably $\mathrm{arccot}(u)$ and $\mathrm{arccsc}(u)$. Once you know these, you can apply the Chain Rule.

And how do you find these derivatives? Well, the Inverse Function Theorem is your first friend. If $y = g(x)$ has an inverse, is differentiable at $x=a$, $g(a)=b$, and $g'(a)\neq 0$, then $(g^{-1})'(b) = \frac{1}{g'(a)}$.

So, consider $y=\sin(\theta)$. Since the derivative of $\sin(\theta)$ is $\cos(\theta)$, you have that $$\frac{d}{du}\arcsin(u) = \frac{1}{\cos(\arcsin(u))}.$$ But... what is $\cos(\arcsin(u))$? Suppose $\arcsin(u)=\theta$. That means that $\sin(\theta) = u$, and since $\sin^2(\theta)+\cos^2(\theta)=1$, then $\cos^2(\theta) = 1 - \sin^2(\theta) = 1-u^2$. Therefore, $|\cos(\theta)|=\sqrt{\cos^2\theta} = \sqrt{1-u^2}$; and because in order to talk about the inverse of $\sin \theta$ we must have $-\frac{\pi}{2}\leq \theta\leq \frac{\pi}{2}$, then $\cos\theta\geq 0$, so $|\cos\theta|=\cos\theta$. That is, $\cos\theta = \sqrt{1-u^2}$. So, plugging into the formula for the derivative of $\arcsin(u)$, we have: $$\frac{d}{du}\arcsin(u) = \frac{1}{\cos(\arcsin u)} = \frac{1}{\sqrt{1-u^2}}.$$

Performing the same kind of analysis for $\arccos(u)$, we get $$\frac{d}{du}\arccos(u) = \frac{1}{-\sin(\arccos u)} = -\frac{1}{\sqrt{1-u^2}}.$$

For $\arctan u$, using the fact that $(\tan\theta)' = \sec^2\theta$, we have $$\frac{d}{du}\arctan u = \frac{1}{\sec^2(\arctan u)}.$$ Now, if $\arctan u = \theta$, then $\tan(\theta) = u$. Using the fact that $\tan^2\theta + 1 = \sec^2\theta$, we get that $sec^2(\arctan u) = \sec^2(\theta) = 1 + \tan^2(\theta) = 1+u^2$, so $$\frac{d}{du}\arctan u = \frac{1}{\sec^2(\arctan u)} = \frac{1}{1+u^2}.$$

For $\mathrm{arccot u}$, the same analysis works, provided you remember that $(\cot\theta)' = -\csc^2\theta$ and that $1 + \cot^2\theta = \csc^2\theta$, so $$\frac{d}{du}\mathrm{arccot}(u) = \frac{1}{-\csc^2(\mathrm{arccot}(u))} = -\frac{1}{1+u^2}.$$

With $\mathrm{arcsec}u$, we have $(sec\theta)' = sec\theta\tan\theta$, so $$\frac{d}{du}\mathrm{arcsec}(u) = \frac{1}{\sec(\mathrm{arcsec} (u))\tan(\mathrm{arcsec} u)}.$$ Here, $\sec(\mathrm{arcsec} (u)) = u$; if $\mathrm{arcsec}(u)=\theta$, then $\sec\theta = u$, and from $\tan^2\theta + 1 = \sec^2\theta$, we get $|\tan\theta| = \sqrt{u^2 - 1}$. You get: $$\frac{d}{du}\mathrm{arcsec}(u) = \frac{1}{\sec(\mathrm{arcsec}(u))\tan(\mathrm{arcsec}(u))} = \frac{1}{u\sqrt{u^2-1}}.$$

And finally, using the fact that $(\csc\theta)' = -\csc\theta\cot\theta$, you get $$\frac{d}{du}\mathrm{arccsc}(u) = \frac{1}{-\csc(\mathrm{arccsc}(u))\cot(\mathrm{arccsc}(u))} = -\frac{1}{u\sqrt{u^2-1}}.$$

Once you have these formulas, the Chain Rule takes care of the rest.

So you have: \begin{align*} \frac{d}{du}\arcsin(u) &= \frac{1}{\sqrt{1-u^2}}, &\qquad \frac{d}{du}\arccos u &= -\frac{1}{\sqrt{1-u^2}},\\ \frac{d}{du}\arctan(u) &=\frac{1}{1+u^2}, &\frac{d}{du}\mathrm{arccot}(u) &= -\frac{1}{1+u^2},\\ \frac{d}{du}\mathrm{arcsec}(u) &=\frac{1}{u\sqrt{u^2-1}}, &\frac{d}{du}\mathrm{arccsc}(u) &= - \frac{1}{u\sqrt{u^2-1}}. \end{align*}