[Math] Triple Integral Problem (xyz)

integrationmultivariable-calculus

Evaluate triple integral

$$\iiint_B xyz \, \mathrm{d}V$$

where $B$ is the portion of the unit ball in the first octant (i.e. all coordinates positive).

Our professor told us the answer is $1/48$, and $B$ are the bounds of integration, but I'm not sure how to graph this or evaluate this triple integral.

Best Answer

Use spherical coordinates for the sphere in the first orthant:

$$\;0\le r\le1,\,0\le\theta\le\frac\pi2,\,0\le\phi\le\frac\pi2\;$$

Observe that here $\;\theta\;$ is the azimuth angle and $\;\phi\;$ is the altitude, or vertical, angle. Then the integral is

$$\int_0^1\int_0^{\pi/2}\int_0^{\pi/2}\overbrace{r\cos\theta\sin\phi}^{=x}\cdot \overbrace{r\sin\theta\sin\phi}^{=y}\cdot \overbrace{r\cos\phi}^{=z}\cdot \overbrace{r^2\sin\phi}^{=\text{Jacobian}}\, d\phi\,\mathrm d\theta\,\mathrm dr=$$

$$=\int_0^1\int_0^{\pi/2}\int_0^{\pi/2} r^5\cos\theta\sin\theta\cos\phi\sin^3\phi\, d\phi\,\mathrm d\theta\,\mathrm dr=$$

$$=\left.\frac16r^6\right|_0^1\cdot\left.\frac12\sin^2\theta\right|_0^{\pi/2}\cdot\left.\frac14\sin^4\phi\right|_0^{\pi/2}=\frac16\cdot\frac12\cdot\frac14=\frac1{48}$$