[Math] Trigonometric function integration: $\int_0^{\pi/2}\frac{dx}{(a^2\cos^2x+b^2 \sin^2x)^2}$

definite integralsintegration

How to integrate $$\int_0^{\pi/2}\dfrac{dx}{(a^2\cos^2x+b^2 \sin^2x)^2}$$

What's the approach to it?

Being a high school student , I don't know things like counter integration.(Atleast not taught in India in high school education ).I just know simple elementary results of definite and indefinite integration. Substitutions and all those works good. :)

Best Answer

In this case, the following trick also works: Dividing both the numerator and the denominator by $\cos^4 x$, we can use the substitution $ t = \tan x$ to obtain

\begin{align*} \int_{0}^{\frac{\pi}{2}} \frac{dx}{(a^2 \cos^2 x + b^2 \sin^2 x)^2} &= \int_{0}^{\frac{\pi}{2}} \frac{1 + \tan^2 x}{(a^2 + b^2 \tan^2 x)^2} \sec^2 x \, dx \\ &= \int_{0}^{\infty} \frac{1 + t^2}{(a^2 + b^2 t^2)^2} \, dt \\ &= \frac{1}{a^2}\int_{0}^{\infty} \left( \frac{1}{a^2 + b^2 t^2} + \frac{(a^2 - b^2) t^2}{(a^2 + b^2 t^2)^2} \right) \, dt. \end{align*}

The first one can be evaluated as follows: Let $bt = a \tan\varphi$. Then

$$ \int_{0}^{\infty} \frac{dt}{a^2 + b^2 t^2} = \frac{1}{ab} \int_{0}^{\frac{\pi}{2}} d\varphi = \frac{\pi}{2ab}. $$

For the second one, we perform the integration by parts:

\begin{align*} \int_{0}^{\infty} \frac{t^2}{(a^2 + b^2 t^2)^2} \, dt &= \left[ - \frac{1}{b^2}\frac{1}{a^2 + b^2 t^2} \cdot \frac{t}{2} \right]_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{2b^2}\frac{dt}{a^2 + b^2 t^2} \\ &= \frac{1}{2b^2} \int_{0}^{\infty} \frac{dt}{a^2 + b^2 t^2} \\ &= \frac{\pi}{4ab^3}. \end{align*}

Putting together, the answer is

$$ \frac{(a^2 + b^2)\pi}{4(ab)^3}. $$