[Math] Translation-invariant operator

functional-analysisreal-analysis

Let $T$ be a translation invariant bounded linear operator $L^p(\mathbb{R}^d)\rightarrow L^q(\mathbb{R}^d)$, i.e. $T(\tau_c f)=T f$ where $\tau_cf(x)=f(x+c)$ for $c\in\mathbb{R}^d$. Then I have read in this marvellous post by Tao that necessarily $q\ge p$ ("the larger exponents are always on the left"). He says one can see this by considering $$f(x)=\sum_{n=1}^N g(x+x_n)$$ where $g$ is say, smooth and compactly supported. Then supposedly $$\|Tf\|_q\sim N^{1/q} \|Tg\|_q$$
But when I apply $T$ I get $Tf(x)=N\cdot Tg(x)$ and hence
$$\|Tf\|_q=N\|Tf\|_q$$
Where is my mistake? Please help me, I'm utterly confused.

Best Answer

i.e. $T(\tau_cf)=Tf$ where

You're misunderstanding translation-invariance here.

A translation-invariant operator $T \colon L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$ is an operator that commutes with translations, i.e. $T \circ \tau_c = \tau_c \circ T$ for all $c \in \mathbb{R}^d$.

Then, with a bit of ho-humming (that can be made precise, see below), when the $x_k$ are spread far enough apart, the $T(\tau_{x_k}g) = \tau_{x_k}Tg$ have the bulk of their weights separated, so

$$\lVert Tf\rVert_q = \lVert \sum \tau_{x_k}Tg\rVert_q \approx \left(\int \sum \left\lvert (Tg)(x-x_k)\right\rvert^q\,dx \right)^{1/q} \approx \left(\sum \int \lvert(Tg)(x-x_k)\rvert^q\,dx \right)^{1/q} \approx N^{1/q} \lVert Tg\rVert_q$$

For $f$ itself, with the assumption of compact support there is no problem seeing $\lVert f\rVert_p = N^{1/p}\lVert g\rVert_p$.

To conclude that that implies $q \geqslant p$, one needs $T \neq 0$.


Making the ho-humming precise:

Let

$$\chi_r(x) = \begin{cases} 1,\quad \lVert x\rVert \leqslant r\\ 0,\quad \lVert x\rVert > r. \end{cases}$$

Fix a (smooth) $g \in L^p(\mathbb{R}^d)$ with compact support in $B_R(0)$.

Then, for $f = \sum\limits_{k = 1}^N \tau_{x_k}g$ and $r > 0$, if $\lVert x_i - x_j\rVert \geqslant 2r$ for all $i \neq j$, you have

$$\begin{align} \lVert Tf\rVert_q &= \left\lVert\left(\sum_{k=1}^N \tau_{x_k}\bigl(\chi_r\cdot(Tg)\bigr)\right) + \left(\sum_{k=1}^N \tau_{x_k}\bigl((1-\chi_r)\cdot(Tg)\bigr)\right) \right\rVert_q\\ &\leqslant \left\lVert\left(\sum_{k=1}^N \tau_{x_k}\bigl(\chi_r\cdot(Tg)\bigr)\right)\right\rVert_q + N\cdot \lVert (1-\chi_r)(Tg)\rVert_q\\ &= \left(\int \sum_{k=1}^N \left\lvert\chi_r(x-x_k)(Tg)(x-x_k)\right\rvert^q\,dx\right)^{1/q} + N\cdot \lVert (1-\chi_r)(Tg)\rVert_q\\ &= \left(N\cdot \lVert \chi_r\cdot (Tg)\rVert^q\right)^{1/q} + N\cdot \lVert (1-\chi_r)(Tg)\rVert_q\\ &= N^{1/q} \lVert \chi_r\cdot (Tg)\rVert_q + N\cdot \lVert (1-\chi_r)(Tg)\rVert_q\\ &\leqslant N^{1/q} \lVert Tg\rVert_q + N\cdot \lVert (1-\chi_r)(Tg)\rVert_q. \end{align}$$

The first inequality follows from the triangle inequality for $\lVert\cdot\rVert_q$. The next equalities follow from the disjointness of the supports of the $\tau_{x_k}\bigl(\chi_r\cdot(Tg)\bigr)$ and the translation-invariance (note: since the result is a number, and not a function, translation-invariance means $\lambda(\tau_c M) = \lambda(M)$ for all $c$ and measurable $M$ here) of the Lebesgue measure. The final inequality from $\lVert\chi_r\cdot h\rVert_q \leqslant \lVert h\rVert_q$ for all $h$.

Using the triangle inequality in the form $\lVert a + b \rVert \geqslant \lVert a\rVert - \lVert b\rVert$ for the split between the $\chi_r(Tg)$ and $(1-\chi_r)(Tg)$, we obtain

$$\lVert Tf\rVert_q \geqslant N^{1/q} \lVert \chi_r\cdot (Tg)\rVert_q - N\cdot \lVert (1-\chi_r)(Tg)\rVert_q$$

Now, given $g$, $N$, and an arbitrary $\varepsilon > 0$, by the dominated convergence theorem, you can choose $r_0 > 0$ so that $\lVert (1-\chi_r)\cdot(Tg)\rVert_q < \varepsilon/N$ for all $r \geqslant r_0$. Choose additionally $r_0 > 2R$, so that the $\tau_{x_k}g$ have disjoint support.

If the $x_k$ are then chosen far enough apart, you find

$$N^{1/q}\lVert Tg\rVert_q - \frac{\varepsilon}{N^{1-1/q}} - N\cdot\frac{\varepsilon}{N} \leqslant \lVert Tf\rVert_q \leqslant N^{1/q}\lVert Tg\rVert_q + \varepsilon,$$

so $\lVert Tf\rVert_q \approx N^{1/q}\lVert g\rVert_q$, and

$$N^{1/q}\lVert Tg\rVert_q - 2\varepsilon \leqslant \lVert Tf\rVert_q \leqslant \lVert T\rVert \cdot \lVert f\rVert_p = N^{1/p}\lVert T\rVert\cdot\lVert g\rVert_p.$$

Since $\varepsilon$ could be arbitrarily chosen,

$$N^{1/q}\lVert Tg\rVert_q \leqslant N^{1/p}\lVert T\rVert\cdot \lVert g\rVert_p$$

for all $N$ and (smooth) $g$ with compact support. If $T \neq 0$, a smooth $g$ with compact support and $Tg \neq 0$ exists ($\mathscr{C}_c(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ for $p < \infty$). Then, taking the limit for $N \to \infty$ would lead to a contradiction if $p > q$.