[Math] Transforming a Riemann Sum to an integral.

calculusintegrationriemann sum

Question. Consider the limit $$\begin{align}
L&=\lim\limits_{n\to\infty}\sum_{k=1}^n\dfrac{k\sqrt{n+k}}{n^{5/2}}\\&=\lim\limits_{n\to\infty}\left(\dfrac{\sqrt{n+1}}{n^{5/2}}+\dfrac{2\sqrt{n+1}}{n^{5/2}}+\dfrac{3\sqrt{n+1}}{n^{5/2}}+\cdots+\dfrac{n\sqrt{n+1}}{n^{5/2}}\right)
\end{align}$$

(a) $L$ is a definite integral, that is $L=\int_a^bf(x)\,\mathrm dx$, for some function $f$, and some numbers $a$ and $b$. Find $f(x)$, $a$ and $b$.

I could not transform Riemann sum to integral.

Best Answer

Note: $$\sum\frac{k\cdot \sqrt{n+k}}{n^{5/2}}=\sum\frac{1}{n} \cdot\frac{k}{n} \cdot\sqrt{1+\frac{k}{n}}$$

Now this is of the form $\sum\frac{1}{n}\cdot f(\frac{k}{n}) = \int_{0}^{1}f(x) \ dx$

Related Question