[Math] Third degree polynomial for $ \sin(x^2+y^2)?$

calculuslimitstaylor expansion

Let R be an open region containing the point $(x_0,y_0).$ Let f, g, and h be functions defined on R, except possibly at$ (x_0,y_0).$ Suppose that for every $(x,y) \in R$ not equal to $(x_0,y_0)$, we have:
$g(x,y) \leq f(x,y) \leq h(x,y)$.

If

$\lim_{(x,y)\to(x_0,y_0)} g(x,y) = L = \lim_{(x,y)\to(x_0,y_0)} h(x,y)$

then:

$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$

Use the squeeze theorem evaluate $\displaystyle \lim_{(x,y)\to(0,0)} \dfrac{\sin (x^2+y^2) }{x^2+y^2}.$

To apply the Squeeze Thoerem we must select functions g and h. Use the Taylor Polynomials of degree 1 and 3 as natural bounds of $\, \sin u $to fill in the blanks.

$? \leq \sin (x^2+y^2) \leq ?$


Okay, so what is 3rd degree Taylor Polynomial? I know the Taylor formula for sin(x) is:

$$\sum_{k=0}^n{{(-1)}^k \frac{x^{2k +1}}{(2k+1)!}}.$$

So for the 1st degree Taylor polynomial, my value is:

$(-1)^0 \cdot \frac{ (x^2+y^2)^{2 \cdot 0 +1} } {(2 \cdot 0 + 1)!} $ = $x^2+y^2$

???

Also, do I have to plug in 0 for x and y, since I'm supposed to evaluate at 0?

Best Answer

Treat $x^2+y^2$ as a single variable. Recall that

$$z-\frac16z^3\le \sin(z)\le z$$

for $0<z<1$. Then, let $z=x^2+y^2$ reveals

$$(x^2+y^2)-\frac16(x^2+y^2)^3\le \sin(x^2+y^2)\le (x^2+y^2)$$

Dividing by $x^2+y^2$ yields

$$1-\frac16(x^2+y^2)^2\le \frac{\sin(x^2+y^2)}{x^2+y^2}\le 1$$

whereupon applying the squeeze theorem, we have

$$\lim_{(x,y)\to (0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}=1$$

Related Question