[Math] the square root of a Fourier transform

fourier analysisfourier transformfunctional-analysis

Given the Fourier transform defined like
$$
\mathcal F[f](\omega) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(t) e^{-iwt} \mathrm{d}t
$$
how could one define a square root $\mathcal G$ of the operator $\mathcal F$ so that
$$
\mathcal G^2[f] = F[f]
$$
My idea is to literally take the square root of $\mathcal F$ like
$$
\mathcal G[f](\omega) = \sqrt{\mathcal F[f](\omega)} = \sqrt{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(t) e^{-iwt} \mathrm{d}t} = \frac{1}{\sqrt{\sqrt{2 \pi}}} \int_{-\infty}^\infty \sqrt{f(t)} e^{-\frac{iwt}{2}} \mathrm{d}t
$$
Then the square of $\mathcal G[f]$ would be
$$
\mathcal G^2[f](\omega) = \frac{1}{\sqrt{\sqrt{2 \pi}}} \frac{1}{\sqrt{\sqrt{2 \pi}}} \int_{-\infty}^\infty \int_{-\infty}^\infty \sqrt{f(t)} \sqrt{f(t')} e^{-\frac{iwt}{2}} e^{-\frac{iw't'}{2}} dt' dt
$$
But this doesn't quite equate to $\mathcal F[f]$ again. So I guess my approach of literally taking the square root is a bit too naive. How then could one define the square root of a Fourier transform?

Best Answer

The Fourier transform can be diagonalised. Let $h_n$ be the Hermite functions, then we have $$ \mathcal F[h_n] = (-i)^n h_n. $$ So a good definition for a square root of the Fourier transform would be $$ \mathcal G[f] = \sum_{n=0}^\infty \langle f, h_n \rangle \mathcal G[h_n ] = \sum_{n=0}^\infty \langle f, h_n \rangle (-i)^{n/2} h_n. $$ A closed form expression can be found in the other answers.

Related Question