[Math] The set of limit points of an unbounded set of ordinals is closed unbounded.

set-theory

Let $\kappa$ be a regular, uncountable cardinal. Let $A$ be an unbounded set, i.e. $\operatorname{sup}A=\kappa$. Let $C$ denote the set of limit points $< \kappa$ of $A$, i.e. the non-zero limit ordinals $\alpha < \kappa$ such that $\operatorname{sup}(X \cap \alpha) = \alpha$. How can I show that $C$ is unbounded? I cannot even show that $C$ has any points let alone that it's unbounded.
(Jech page 92)

Thanks for any help.

Best Answer

Fix $\xi\in \kappa$, since $A$ is unbounded there is a $\alpha_0\in A$ so that $\xi<\alpha_0$. Now, construct recursively a strictly increasing sequence $\langle \alpha_n: n\in \omega\rangle$. Let $\alpha=\sup\{\alpha_n: n\in \omega\}.$ Since $\kappa$ is regular and uncountable, we have $\alpha<\kappa.$ It is also easy to see that $\sup(A\cap\alpha)=\alpha$.

Related Question