[Math] The image of orthonormal basis under compact operator

compact-operatorsfunctional-analysishilbert-spaces

I need a help to prove that statement: if $\{e_n\}$ an orthonormal basis in Hilbert space $H$ and $A$ is a compact operator from $H$ to $H$, then $Ae_n\rightarrow 0$. Thx for any help.

Best Answer

Here's a different proof.

Assume first that $A$ is finite-rank. Then $\text{Tr}(A^*A)<\infty$, and so $$ 0\leq\text{ Tr}(A^*A)=\sum_{n=1}^\infty\langle A^*Ae_n,e_n\rangle=\sum_{n=1}^\infty\|Ae_n\|^2<\infty, $$ and so $\|Ae_n\|\to0$.

If $A$ is any compact operator, there exists a sequence of finite-rank operators $\{A_m\}$ with $\|A_m- A\|\to0.$ Then $$ \|Ae_n\|\leq\|(A-A_m)e_n\|+\|A_me_n\|\leq\|A_m-A\|+\|A_me_n\|. $$ So $$ 0\leq\limsup_n\|Ae_n\|\leq\|A_m-A\|+0=\|A_m-A\|. $$ As $m$ was arbitrary, we conclude that $0\leq\limsup_n\|Ae_n\|=0$, and so $\lim_n\|Ae_n\|=0$.