[Math] The harmonic conjugate of the function

complex-analysisharmonic functions

Let $u + iv$ be analytic, and $u(x, y) = \cosh{(x)}\cos{(y)}$. Find the harmonic conjugate function $v(x, y)$.

The harmonic conjugate function is given by

$
\begin{align}
v(z) &= \int_{z_0}^z u_x dy + \int_{z_0}^z u_y dx \\
&= \int_{z_0}^z \sinh{(x)}\,\cos{(y)}\,dy – \int_{z_0}^z \cosh{(x)}\,\sin{(y)}\,dx\\
&= \int_{z_0}^z \sinh{(x)}\,\cos{(y)}\,dy – \int_{z_0}^z \cosh{(x)}\,\sin{(y)}\,dx \\
&= \sinh{(x)}\int_{z_0}^z \cos{(y)}\,dy – \sin{(y)}\int_{z_0}^z \cosh{(x)}\,dx \\
&= \sinh{(x)}\left(\sin{(z)} – \sin{(z_0)}\right) – \sin{(y)}\left(\sinh{(z)} – \sinh{(z_0)}\right)
\end{align}
$

To get it in correct form, we then take the imaginary part.

$v(x, y) = \Im{(v(z))}$.

Is my answer correct or not?

Best Answer

From the first Cauchy-Riemann condition we have:

$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = \sinh x \cos y$

$v(x,y) = \int \sinh x \cos y \mathrm{d}y = \sinh x \sin y + F(x)$

$\frac{\partial v}{\partial x} = \cosh x \sin y + F'(x)$

$-\frac{\partial u}{\partial y} = \cosh x \sin y.$

Since the second Cauchy-Riemann condition requires:

$\frac{\partial v}{\partial x} = - \frac{\partial u}{\partial y},$

we have:

$F'(x) = 0,$

$F(x) = constant.$

The required function is then:

$v(x,y) = \sinh x \sin y + C.$