The Gradient on Sphere – Riemannian Geometry

riemannian-geometryspherical coordinates

In $n$-dimensional spherical coordinates, the gradient of a real valued function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ can be represented by $\mathrm{grad} f = \left( \dfrac{\partial f}{\partial r}, \dfrac{1}{r} \nabla_\theta f \right) $, where
$$ \nabla_\theta f = \dfrac{\partial f}{\partial \theta_1} \vec{\theta_1} + \dfrac{1}{\sin \theta_1} \dfrac{\partial f}{\partial \theta_2} \vec{\theta_2} + \dfrac{1}{\sin \theta_1 \sin \theta_2} \dfrac{\partial f}{\partial \theta_3} \vec{\theta_3} + \cdots + \dfrac{1}{\sin \theta_1 \cdots \sin \theta_{n-2}} \dfrac{\partial f}{\partial \theta_{n-1}} \vec{\theta_{n-1}}.$$

On the other hand, let us consider the unit sphere $S^{n-1} \subset \mathbb{R}^n$ with the usual metric. (Pullback of the Euclidean metric on $\mathbb{R}^n$.) I guess that $\nabla_\theta f$ is the gradient of a restricted function $f \vert_{S^{n-1}}$ on the sphere, but I do not know how to check it. Please give any advice.

Best Answer

Let $(g_{ij})$ denote the usual metric on $\mathbb{R}^{n+1}$. Consider the parameterization of $\mathbb{R}^{n+1}\setminus\{0\}$ given by $\vec{x}:\mathbb{R}^+\times\mathbb{S}^n\to\mathbb{R}^{n+1}$, $\vec{x}(r,\sigma)=r\sigma$. In these polar coordinates, we have that $$(g_{ij})=\renewcommand{\arraystretch}{1.5} \left(\begin{array}{@{}c|c@{}} \,\,1 & \begin{matrix} 0 & \cdots & 0 \end{matrix} \\ \hline \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} & \begin{matrix} r^2\left(g_{ij}^{\mathbb{S}^n}\right) \end{matrix} \end{array}\right),$$ where $\left(g_{ij}^{\mathbb{S}^n}\right)$ is the metric on $\mathbb{S}^{n}\subseteq\mathbb{R}^{n+1}.$ You should show this if you haven't shown this before! Note that the inverse matrix is given by $$(g^{ij})=\renewcommand{\arraystretch}{1.5} \left(\begin{array}{@{}c|c@{}} \,\,1 & \begin{matrix} 0 & \cdots & 0 \end{matrix} \\ \hline \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} & \begin{matrix} \frac{1}{r^2}\left(g^{ij}_{\mathbb{S}^n}\right) \end{matrix} \end{array}\right),$$ where $\left(g^{ij}_{\mathbb{S}^n}\right)$ is the inverse of the metric of $\mathbb{S}^n$.

Now recall that the gradient is defined as $\nabla f = (df)^\sharp$. In local coordinates, that is $$\nabla f = g^{ij}\frac{\partial f}{\partial x^j}\frac{\partial}{\partial x^i},$$ where in the above I used the Einstein summation notation. Now we compute the gradient of $\mathbb{R}^{n+1}$ in polar coordinates: \begin{align*} \nabla_{\mathbb{R}^{n+1}}f = \frac{\partial f}{\partial r}\frac{\partial}{\partial r}+\frac{1}{r^2}\sum_{i=1}^{n}\sum_{j=1}^{n}g^{ij}_{\mathbb{S}^n}\frac{\partial f}{\partial \theta_j}\frac{\partial}{\partial\theta_i} = \frac{\partial f}{\partial r}\frac{\partial}{\partial r} + \nabla_{\mathbb{S}^n(r)}f. \end{align*} Note that my result is different from yours by a factor of $\frac{1}{r^2}$, this is because the surface gradient on $\mathbb{S}^n(r)$ differs from the surface gradient on $\mathbb{S}^n(1)$ by this factor. If we were to write the surface gradient in coordinates, and normalize our tangent vectors, we would obtain the exact same representation you have in your question.

Related Question