[Math] The entry-level PhD integral: $\int_0^\infty\frac{\sin 3x\sin 4x\sin5x\cos6x}{x\sin^2 x\cosh x}\ dx$

calculusclosed-formdefinite integralsintegrationtrigonometry

I hope you find this integral interesting.

Evaluate
$$\int_0^\infty\frac{\sin\left(\,3x\,\right)\sin\left(\,4x\,\right)
\sin\left(\,5x\,\right)\cos\left(\,6x\,\right)}{x\,\sin^{2}\left(\,x\,\right)\cosh\left(\,x\,\right)}\,\,\mathrm{d}x\tag1$$

This problem is taken from the PhD graduate entry tests in my college. I've tried to use product-to-sum trigonometric identities
$$2\sin 4x\sin 3x=\cos x-\cos 5x$$
and
$$2\cos 6x\sin 5x=\sin 11x-\sin x$$
I got a bunch of the following form
$$\int_0^\infty\frac{\sin \alpha x\cos \beta x}{x\sin^2 x\cosh x}\ dx\quad\Longrightarrow\quad\int_0^\infty\frac{\sin \gamma x}{x\sin^2 x\cosh x}\ dx\tag2$$
I tried
$$I'(\gamma)=\int_0^\infty\frac{\cos \gamma x}{\sin^2 x\cosh x}\ dx\tag3$$
but the latter form is not easy to evaluate either. Can anyone here help me to evaluate $(1)$? Thanks in advance.

Best Answer

By De Moivre's formula $\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}$ we have the following Fourier sine series: $$\frac{\sin(3x)\sin(4x)\sin(5x)\cos(6x)}{\sin^2(x)}\\= -\frac{1}{2} \sin(2x)-\frac{1}{2}\sin(4x)+\sin(8x)+\frac{3}{2}\sin(10x)+\frac{3}{2}\sin(12x)+\sin(14x)+\frac{1}{2}\sin(16 x)$$ and: $$I(n)=\int_{0}^{+\infty}\frac{\sin(2nx)}{x\cosh(x)}\,dx = 2\arctan\left(\tanh\frac{\pi n}{2}\right) $$ follows by differentiation under the integral sign. The original integral can so be expressed in terms of the Gudermannian function:

$$ I = \frac{1}{2} \big(-\text{gd}(\pi)- \text{gd}(2\pi) + 2 \text{gd}(4\pi) + 3 \text{gd}(5\pi) + 3 \text{gd}(6\pi) + 2 \text{gd}(7\pi) + \text{gd}(8\pi)\big) \approx 7.11363 $$