[Math] The cdf and pdf of the sum of independent Poisson random variables

probabilityprobability distributions

Assume we have $X_1,…,X_n$ independent Poisson random variables. What is the cdf or pdf of $\sum_{i=1}^{n} X_i$ ?

Best Answer

In the case where you have two variables, the following holds:

Suppose $X_1$ has Poisson distribution with parameter $\lambda_1$ and $X_2$ has Poisson distribution with parameter $\lambda_2$. Then if $X_1$ and $X_2$ are independent, the variable $X_1+X_2$ has Poisson distribution with parameter $\lambda_1+\lambda_2$.

This is intuitively clear if we regard the variables as relating to Poisson processes with common unit time. $X_1$ gives the number of events occurring in a unit time period where the average number of events per unit time period is $\lambda_1$. $X_2$ gives the number of events occurring in a unit time period where the average number of events per unit time period is $\lambda_2$. By the independence assumption, the total number of events from both processes occurring in a unit time period would be $X_1+X_2$, and the average number of these events per unit time period would be $\lambda_1+\lambda_2$. So, $X_1+X_2$ has Poisson distribution with parameter $\lambda_1+\lambda_2$.

Rigorously, we can compute the probability mass function, $p_Y$, of $Y=X_1+X_2$ as follows:

For our variables $X_1$ and $X_2$, we have for $i\ge0$: $$P[X_1=i]= {\lambda_1^i\over i!} e^{-\lambda_1}\quad\text{and}\quad P[X_2=i]= {\lambda_2^i\over i!} e^{-\lambda_2}.$$

Let $k\ge0$. Then: $$ \eqalign{ p_Y(k) &=\sum_{i=0}^kP[X_1=i,X_2=k-i]\cr &=\sum_{i=0}^kP[X_1=i]\cdot P[ X_2=k-i]\cr &=\sum_{i=0}^k{\lambda_1^i\over i!}e^{-\lambda_1}\cdot{\lambda_2^{k-i}\over(k-i)!}e^{-\lambda_2}\cr &=\sum_{i=0}^k{\lambda_1^i\lambda_2^{k-i}\over i!\,(k-i)!}e^{-(\lambda_1+\lambda_2)}\cr &= e^{-(\lambda_1+\lambda_2)}\cdot\sum_{i=0}^k{\lambda_1^i\lambda_2^{k-i}\over i!\,(k-i)!}\cr &={1\over k!}\cdot e^{-(\lambda_1+\lambda_2)}\cdot\sum_{i=0}^k{k!\over i!\,(k-i)!}\,\lambda_1^i\lambda_2^{k-i}\cr % &={1\over k!}\cdot e^{-(\lambda_1+\lambda_2)}\cdot\sum_{i=1}^k{k!\over i!\,(k-i)!}\,\lambda_1^i\lambda_2^{k-i}\cr &={(\lambda_1+\lambda_2)^k\over k!}\cdot e^{-(\lambda_1+\lambda_2)},\cr } $$ where the second equality above used the independence of $X_1$ and $X_2$ and the last equality used the Binomial Theorem.

So, $$ p_Y(k)= {(\lambda_1+\lambda_2)^k\over k!}\cdot e^{-(\lambda_1+\lambda_2)},\quad k\ge 0 ; $$ which we recognize as the Poisson distribution with parameter $\lambda_1+\lambda_2$.

The result for $n\ge 1$ now follows easily by induction.