[Math] Symbolic power of a prime ideal is primary

commutative-algebraidealslocalizationmaximal-and-prime-idealsring-theory

Let $A$ be a commutative ring, $S$ a multiplicatively closed
subset of $A$. For any ideal $\mathfrak a$, let $S(\mathfrak a)$ denote the inverse image of $S^{−1}\mathfrak a$ under the localization map $\varphi: A → S^{−1}A$. We denote $\mathfrak p^{(n)}:= S_{\mathfrak p}(\mathfrak p^n)$ where $S_{\mathfrak p}:= A \setminus\mathfrak p$.

Prove that $\mathfrak p^{(n)} $ is a $\mathfrak p$-primary ideal, and if $\mathfrak p^n$ has a primary decomposition, then $\mathfrak p^{(n)}$ is a $\mathfrak p$-primary component. (Atiyah and Macdonald, Introduction to Commutative Algebra, Chapter 4, Exercise 13 i) and ii).)

My approach: to prove that $\mathfrak p^{(n)}: = \varphi^{-1}(S_{\mathfrak p}^{-1}\mathfrak p^n)$ is primary. Let $xy \in \mathfrak p^{(n)}, x \notin \mathfrak p^{(n)} $. I need to show that there exists an $m\in \mathbb{N}$ such that $y^m \in \mathfrak p^{(n)}$. From $xy \in \mathfrak p^{(n)}, x \notin \mathfrak p^{(n)}$ it follows $\varphi(x)\varphi(y) \in S_{\mathfrak p}^{-1}\mathfrak p^n, \varphi(x) \notin S_{\mathfrak p}^{-1}\mathfrak p^n$. At this step I do not know how to show that $\exists m\in \mathbb{N}$ s.t. $\varphi(y)^m \in S_{\mathfrak p}^{-1}\mathfrak p^n$.

Please give me some hints. Many thanks

Best Answer

  • A contraction of a primary ideal is primary.
  • Let $Q$ be the $\mathfrak p$-primary component of $\mathfrak p^n$. Both $Q$ and $\mathfrak p^{(n)}$ are $\mathfrak p$-primary ideals, so you can check the equality locally at $\mathfrak p$; they all equal to $\mathfrak p^nR_{\mathfrak p}$.