[Math] svd $D^2$ trace and relation bw $A A’$

linear algebramathematical modeling

Let $E=D^2$ be a square of diagonal matrix D in a n SVD decomposition
$$A=UDV' $$
Find relationship bw trace D and that of $AA'$ when $A_{Nxt}$. THE $Nxt$ data matrix where $N<t$


Data Matrix A is decompostion into
$$ A_{nxt}=U_{nxm}D_{mxm}V'_{mxt}$$
where n is spatial dimension $t$,t temporal length $m=min(n,t)$, adn $V'$ the transpose of v

  • U spatial pattern matrix
  • D diagonal level matrix
  • V temporal matrix
    computing $A A^t$
    $$\begin{aligned}
    A A^t &= [UDV'][UDV']^t
    \\ &=[UDV'][V'^t D^t U^t]
    \\ &= UDV^tVD^t U^t &&\text{ using comment }
    \\ &= UDID^tU^t
    \\ &= UDD^tU^t
    \\ &= UD^2U^t &&\text{ U have eigenvecteros in it}
    \\ &= \vdots
    \end{aligned} $$

    From strang's book $$A^t A = V
    \begin{Bmatrix}
    \delta^2_1 && 0 \\ 0 && \delta^2_2
    \end{Bmatrix} V^t$$
    where $\delta$ are eigenvalues , $v$ are eigenvectors

Guessing that Trace of $E=tr(AA^t)$

have trouble make an elegant argument. Thinking need to simplify $A A^t$ with the properites of the decompose matrix

Best Answer

Note that $A=UDV^T$ where $V^TV=I$ and $U^TU=I$, $D$ is diagonal ($D^T=D$), and $U$ and $V$ are unitary (i.e. $U^T=U^{-1}$ and $V^T=V^{-1}$).

Then $$AA^T=(UDV^T)(UDV^T)^T=UDV^TVDU^T=UD^2U^T$$ Finally, since generally $\text{tr}(XY)=\text{tr}(YX)$, we have $$\text{tr}(AA^T)=\text{tr}(U(D^2U^T))=\text{tr}((D^2U^T)U)=\text{tr}(D^2)$$

Related Question