[Math] Surface Integral for the plane

calculussurface-integralsvectors

The formula for surface integral is given by:

$$\iint_S \overrightarrow F \cdot \hat n \space dS $$

I want to know about the $dS$ part.

For example:
If the plane lies in the first octant then it is:

$$dS = \frac{dx \space dy}{|\hat k \cdot \hat n|}$$

There are also other case such as:

$$dS = \frac{dz \space dy}{|\hat i \cdot \hat n|}$$

and
$$dS = \frac{dx \space dz}{|\hat j \cdot \hat n|}$$

How do I exactly decide which $dS$ formula to choose i.e. if the plane lies in fourth or second octant. How will I choose?

Best Answer

To calculate a surface integral over a vector field you need parametrization of that oriented surface. Without too much of rigour:

$$\begin{align}\iint_S {\mathbf v}\cdot\mathrm d{\mathbf {S}} &= \iint_S \left({\mathbf v}\cdot {\mathbf n}\right)\,\mathrm dS\\&{}= \iint_T \left({\mathbf v}(\mathbf{x}(s, t)) \cdot {\left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right) \over \left\|\left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right)\right\|}\right) \left\|\left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right)\right\| \mathrm ds\, \mathrm dt\\&{}=\iint_T {\mathbf v}(\mathbf{x}(s, t))\cdot \left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right) \mathrm ds\, \mathrm dt.\end{align}$$

$d{\mathbf {S}}$ means that you are integrating vector field over an oriented surface. When you "extract" a unit normal vector from it you are left with a scalar function and $dS$ which correspond to a "normal" (scalar) surface integral. In this notation $$dS= \left\|\left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right)\right\| \mathrm ds\, \mathrm dt$$

where $\mathbf{x}(s,t): T\rightarrow S$ is a parametrization of your surface.

Also please note how $\left\|\left({\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}\right)\right\| $ cancel each other and simplify calculations.