[Math] Suppose that the columns of a matrix A are linearly independent. Then Ax=0 has only the trivial solution.

linear algebra

Is this proposition true?

Suppose that the columns of a matrix A are linearly independent. Then Ax=0 has only the trivial solution.

Best Answer

$$A\mathbf{x}= 0$$ $$\begin{bmatrix}a_{1,1}&a_{1,2} &... &a_{1,m}\\a_{2,1} &&& a_{2,m} \\ : &&&: \\ a_{n,1} & a_{n,2}& ...& a_{n,m}\end{bmatrix} \begin{bmatrix}x_1\\x_2\\:\\x_m\end{bmatrix} = 0_v$$ Let $\mathbf{a}_j$ be the $j$th column of $A$ and $0_v$ the zero vector. Hence, for all $c_j \ne 0$, $\sum_{j=1}^{n}c_j\mathbf{a}_{j} \ne 0_v$ since the columns are independent. Computing the product above yields, $$x_1\begin{bmatrix} a_{1,1}\\:\\a_{,1} \end{bmatrix} + x_2\begin{bmatrix} a_{1,2}\\:\\a_{n,2} \end{bmatrix} ... x_m\begin{bmatrix} a_{1,m}\\:\\a_{n,m} \end{bmatrix} =0_v$$ Because $\sum_{j=1}^{m}c_j\mathbf{a}_{j} \ne 0_v$ for all $c_j \ne 0$ that means the only possible values for $x_i$ is $0$ for all $x_i$. Therefore the only solution is the trivial solution where $\mathbf{x} = 0_v$