[Math] $\sup\{g(y):y\in Y\}\leq \inf\{f(x):x\in X\}$

inequalityreal-analysissupremum-and-infimum

Let $X$ and $Y$ be two nonempty sets and let $h:X\times Y\rightarrow \mathbb{R}$ have a bounded range in $\mathbb{R}$.Let $f:X\rightarrow \mathbb{R}$ and $g:Y\rightarrow \mathbb{R}$ defined by $$f(x)=\sup\{h(x,y):y\in Y\}$$ and $$g(y)=\inf\{h(x,y):x\in X\}$$Then can we prove that
$$\sup\{g(y):y\in Y\} \leq \inf\{f(x):x\in X\}?$$

Best Answer

If $A$ and $B$ are bounded subsets of $\mathbb R$, then $\sup A\leq \inf B$ is equivalent to the statement that for all $a\in A$ and $b\in B$, $a\leq b$. Thus, it suffices to show that for each $x\in X$ and $y\in Y$, $g(y)\leq f(x)$.

Let $x_0\in X$ and $y_0\in Y$ be fixed but arbitrary. Then $g(y_0)\leq h(x_0,y_0) \leq f(x_0)$.