[Math] Sum of Positive Divisors: $\sum_{d|n} \mu(n/d)\nu(d)=1$ and $\sum_{d|n} \mu(n/d)\sigma(d)=n$

divisor-counting-functiondivisor-sumelementary-number-theorysummation

If $\nu(n)=$ Number of positive divisors of $n,$ $\mu$ is the Möbius function and
$\sigma(n)$ is the sum of positive divisors.

show that;

  1. $\sum\limits_{d|n} \mu(n/d)\nu(d)=1$ for all $n.$

  2. $\sum\limits_{d|n} \mu(n/d)\sigma(d)=n$ for all $n.$

Best Answer

By definition $\nu(n)=\sum_{d|n} 1$ and $\sigma(n)=\sum_{d|n} d$ for every integer $n>0$ so that $\{\nu,1\}$ and $\{\sigma,\operatorname{id}\}$ (with $1:n\mapsto 1$ and $\operatorname{id}:n\mapsto n$) will be both Möbius pairs according to the Möbius inversion formula.