[Math] Sum of Maclaurin series

convergence-divergencesequences-and-series

Find the sum of the infinite series
\begin{equation}
\sum_{n=2}^\infty\frac{7n(n-1)}{3^{n-2}}
\end{equation}
I think it probably has something to do with a known Maclaurin series, but cannot for the life of me see which one.. Any hints would be appreciated!

Edit: Using your hints, I was able to solve the problem. Solving it here in case someone is wondering about the same thing:

Manipulate \begin{equation}\sum_{n=2}^\infty x^n=\frac{1}{1-x}-x-1 \end{equation}
by differentiating both sides:
\begin{equation}\sum_{n=2}^\infty nx^{n-1}=\frac{1}{(1-x)^2}-1 \end{equation}
differentiate again:
\begin{equation}\sum_{n=2}^\infty (n-1)nx^{n-2}=\frac{2}{(1-x)^3} \end{equation}
plugging in $\frac{1}{3}$ for x:
\begin{equation}\sum_{n=2}^\infty n(n-1)(\frac{1}{3})^{n-2}=\frac{2}{(1-\frac{1}{3})^3} \end{equation}
which is equivalent to
\begin{equation}\sum_{n=2}^\infty \frac{n(n-1)}{3^{n-2}} \end{equation}
finally, multiplying by 7 gives us
\begin{equation}\begin{split}\sum_{n=2}^\infty \frac{7n(n-1)}{3^{n-2}}&=7\frac{2}{(1-\frac{1}{3})^3}\\
&=\underline{\underline{\frac{189}{4}}} \end{split} \end{equation}

Best Answer

Hint: Notice

$$ \sum x^n = \frac{ 1}{1- x} $$

$$ \sum n x^{n-1} = \frac{1}{(1-x)^2} $$

$$ \sum n (n-1) x^{n-2} = \frac{2 }{(1-x)^3} $$

they all converge for $|x| < 1$

Related Question