[Math] Stokes Theorem – finding the normal

stokes-theorem

Calculate the absolute value of the line integral
$$\int\limits_C (2yz){d} x\ +(zx){d} y +(xy){d}z$$
where the curve C is the intersection between the surfaces $x^2+y^2=1$ and $z=y^2$.

I think I am correct in applying Stokes Theorem to this problem and have calculated the $curl\ \vec{F}= (0,y,-x)$. However I am stumped on how to find the unit normal vector? Any help greatly appreciated.

Best Answer

Method 1: Calculating the Line Integral.

Lookings at the plots of the surfaces $$ \color{blue}{z = y^2} \qquad \color{orange}{x^2+y^2=1} $$

enter image description here

We see that the intersecting curve $C$ looks like:

enter image description here

We can parametrize this curve by seeing that, since the $x,y$ coordinates lie on the unit circle, we have: $$C: \mathbf{x}(t) = \langle \cos t, \sin t, \sin^2 t \rangle \qquad (0 \leq t \leq 2\pi) $$

Taking the vector field: $$ \mathbf{F}(x,y,z) = \langle 2yz, xz, xy \rangle $$

We evaluate the line integral: \begin{align*} \int_C \mathbf{F} \cdot d\mathbf{s} &= \int_0^{2\pi} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt \\ &= \int_0^{2\pi} \langle 2\sin^3 t, \cos t \sin^2 t, \cos t \sin t \rangle \cdot \langle -\sin t, \cos t, 2\sin t \cos t \rangle \, dt \\ &= \int_0^{2\pi} \left(3 \cos^2 t \sin^2 t - 2\sin^4 t \right) \, dt \\ &= \int_0^{2\pi} \left[3\left(\frac{\sin 2t}{2} \right)^2 - 2\left(\frac{1 - \cos 2t}{2} \right)^2 \right] \, dt \\ &= \int_0^{2\pi} \left[\frac{3\sin^2 2t}{4} - \frac{2 - 4\cos 2t + 2\cos^2 2t}{4} \right] \, dt \\ &= \int_0^{2\pi} \left[\frac{3\sin^2 2t - 2\cos^2 t + 4\cos 2t - 2}{4} \right] \, dt \\ &= \int_0^{2\pi} \left[\frac{\sin^2 2t + 3\cos 2t - 2}{4} \right] \, dt \\ &= \int_0^{2\pi} \left[\frac{1 - \cos 4t + 6\cos 2t - 4}{8} \right] \, dt \\ &= \int_0^{2\pi} \left[\frac{1 - 4}{8} \right] \, dt \\ &= -\frac{3}{8}\int_0^{2\pi} \, dt \\ &= -\frac{3\pi}{4} \end{align*}


Method 2: Applying Stokes' Theorem.

We must choose a surface $S$ that has $C$ as its boundary. We can simply choose the part of the surface $\color{blue}{z = y^2}$ thats enclosed within $\color{orange}{x^2+y^2=1}$, that is: enter image description here

$$S = \{ (x,y,z) \mid x^2 + y^2 \leq 1 \,,\, z = y^2 \}$$

We can parametrize the surface by noting that the $(x,y)$ points form a solid disk in the $x$-$y$ space, and $z$ is simply $y^2$, so we parametrize the surface as

$$S: \quad \mathbf{X}(r,\theta) = \langle r \cos \theta, r \sin \theta, r^2 \sin^2 \theta \rangle \qquad (\underbrace{0 \leq r \leq 1, 0 \leq \theta \leq 2\pi}_{(r,\theta) \in \, R = [0,1] \times [0,2\pi]})$$

We find the normal vector that arises from this parametrization by calculating: \begin{align*} \frac{\partial \mathbf{X}}{\partial r} &= \langle \cos \theta, \sin \theta, 2r \sin^2 \theta \rangle \\ \frac{\partial \mathbf{X}}{\partial \theta} &= \langle -r \sin \theta, r\cos \theta, 2r^2 \sin \theta \cos \theta \rangle \\ \mathbf{N}(r,\theta) &= \frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial \theta} \\ &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 2r \sin^2 \theta \\ -r \sin \theta & r\cos \theta & 2r^2 \sin \theta \cos \theta \end{vmatrix} \\ &= \langle 0, -2r^2 \sin \theta, r \rangle \end{align*} We note that the $z$ component of the normal vector is positive, so as to point upward, conforming with the counterclockwise orientation of the line integral taken before.

The curl of the vector field $\mathbf{F}$ is: \begin{align*} \nabla \times \mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2yz & xz & xy \end{vmatrix} = \langle 0, y, -z \rangle \end{align*}

And so, we evaluate the line integral over $C = \partial S$ by applying Stoke's Theorem: \begin{align*} \int_{\partial S} \mathbf{F} \cdot d\mathbf{s} &= \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \\ &= \iint_R (\nabla \times \mathbf{F})\mid_{\mathbf{X}(r,\theta)} \cdot \mathbf{N}(r,\theta) \, dA \\ &= \int_0^{2\pi} \int_0^1 \langle 0, r \sin \theta, -r^2 \sin^2 \theta \rangle \cdot \langle 0, -2r^2 \sin \theta, r \rangle \, dr \, d\theta \\ &= \int_0^{2\pi} \int_0^1 (-3r^3 \sin^2 \theta) \, dr \, d\theta \\ &= -\frac{3}{4}\int_0^{2\pi} \sin^2 \theta \, d\theta \\ &= -\frac{3}{8}\int_0^{2\pi} (1 - \cos 2\theta) \, d\theta \\ &= -\frac{3}{8}\int_0^{2\pi} 1 \, d\theta \\ &= -\frac{3\pi}{4} \end{align*}