[Math] Squeeze Theorem Problem

limits

I'm busy studying for my Calculus A exam tomorrow and I've come across quite a tough question. I know I shouldn't post such localized questions, so if you don't want to answer, you can just push me in the right direction.

I had to use the squeeze theorem to determine:
$$\lim_{x\to\infty} \dfrac{\sin(x^2)}{x^3}$$

This was easy enough and I got the limit to equal 0. Now the second part of that question was to use that to determine:
$$\lim_{x\to\infty} \dfrac{2x^3 + \sin(x^2)}{1 + x^3}$$

Obvously I can see that I'm going to have to sub in the answer I got from the first limit into this equation, but I can't seem to figure how how to do it.

Any help would really be appreciated! Thanks in advance!

Best Answer

I assume you meant $$\lim_{x \to \infty} \dfrac{2x^3 + \sin(x^2)}{1+x^3}$$ Note that $-1 \leq \sin(\theta) \leq 1$. Hence, we have that $$\dfrac{2x^3 - 1}{1+x^3} \leq \dfrac{2x^3 + \sin(x^2)}{1+x^3} \leq \dfrac{2x^3 + 1}{1+x^3}$$ Note that $$\dfrac{2x^3 - 1}{1+x^3} = \dfrac{2x^3 +2 -3}{1+x^3} = 2 - \dfrac3{1+x^3}$$ $$\dfrac{2x^3 + 1}{1+x^3} = \dfrac{2x^3 + 2 - 1}{1+x^3} = 2 - \dfrac1{1+x^3}$$ Hence, $$2 - \dfrac3{1+x^3} \leq \dfrac{2x^3 + \sin(x^2)}{1+x^3} \leq 2 - \dfrac1{1+x^3}$$ Can you now find the limit?

EDIT

If you want to make use of the fact that $\lim_{x \to \infty} \dfrac{\sin(x^2)}{x^3} = 0$, divide the numerator and denominator of $\dfrac{2x^3 + \sin(x^2)}{1+x^3}$ by $x^3$ to get $$\dfrac{2x^3 + \sin(x^2)}{1+x^3} = \dfrac{2 + \dfrac{\sin(x^2)}{x^3}}{1 + \dfrac1{x^3}}$$ Now make use of the fact that $\lim_{x \to \infty} \dfrac{\sin(x^2)}{x^3} = 0$ and $\lim_{x \to \infty} \dfrac1{x^3} = 0$ to get your answer.