[Math] Squeeze Theorem: Finding the limit of a trig function

calculuslimitsreal-analysistrigonometry

I'm stuck on finding the limit of a complex fraction/trig function. Could someone please assist, or point out where I'm going wrong?

Determine

$$\lim\limits_{x \to 0} \frac{(x+1)\cos(\ln(x^2))}{\sqrt{(x^2+2)}}$$

For all $x$: $$-1 \le \cos(\ln(x^2)) \le 1$$

Multiply by $(x+1)$:

$$-(x+1) \le (x+1)\cos(\ln(x^2)) \le (x+1)$$

Divide by $\sqrt{(x^2+2)}$:

$$\frac{-(x+1)}{\sqrt{(x^2+2)}} \le \frac{(x+1)\cos(\ln(x^2))}{\sqrt{(x^2+2)}} \le \frac{(x+1)}{\sqrt{(x^2+2)}}$$

Now to find the limits:

$$\lim\limits_{x \to 0} \frac{-(x+1)}{\sqrt{(x^2+2)}} = \frac{-1}{\sqrt{(2)}}$$

$$\lim\limits_{x \to 0} \frac{(x+1)}{\sqrt{(x^2+2)}} = \frac{1}{\sqrt{(2)}}$$

This is where I get stuck. My limits are not equal, so I cannot solve using the Squeeze Theorem. I must've skipped a step or used the wrong approach, but I'm not sure where.

Best Answer

$$f(x)=\frac{(x+1)\cos(\ln(x^2))}{\sqrt{x^2+2}}$$

Take two sequences tending to $0$:

$$\begin{array}{} a_n=\exp\left(\tfrac{\pi}{4}(1-2n)\right),&\lim\limits_{n\to\infty} a_n=0\\ b_n=\exp(-n\pi),&\lim\limits_{n\to\infty} b_n=0 \end{array}$$

We have

$$f(a_n)=\frac{(a_n+1)\cos\left(\ln\left(\exp\left(\tfrac{\pi}{4}(1-2n)\right)^2\right)\right)}{\sqrt{a_n^2+2}} =\frac{(a_n+1)\cos\left(\tfrac{\pi}{2}(1-2n)\right)}{\sqrt{a_n^2+2}}=0$$

$$f(b_n)=\frac{(x+1)\cos(\ln(\exp(-n\pi)^2))}{\sqrt{x^2+2}} =\frac{(x+1)\cos(-2n\pi)}{\sqrt{x^2+2}} =\frac{b_n+1}{\sqrt{b_n^2+2}}$$

Calculating the limits of $f(a_n)$ and $f(b_n)$ we get:

$$\lim_{n\to\infty}f(a_n)=0$$ $$\lim_{n\to\infty}f(b_n)=\tfrac{\sqrt2}{2}$$

Thus the limit

$$\lim_{x\to0}f(x)$$

doesn't exist.

Related Question