[Math] Spectrum of self-adjoint operator on Hilbert space real

functional-analysishilbert-spacesspectral-theory

My book says that a self-adjoint bounded linear operator $A:H\to H$ on a complex Hilbert (not sure if separability is needed) space has a real spectrum.

I guess that the key is in the fact that any $f\in H^{\ast}$ can be represented by a functional of the form $\langle-,x_0\rangle$ for some $x_0\in H$, but I am not able to use that fact. I also see that $\forall x,y\in H\quad\langle(A-\lambda I)x,y\rangle=\langle x,(A-\bar{\lambda} I)y\rangle$ but I'm not sure that can be useful to prove the statement…

Thank you very much for any help!!!

Best Answer

If $\Im\lambda \ne 0$, and $x \in X$, then $$ \Im\lambda \|x\|^{2} = -\Im((A-\lambda I)x,x),\\ |\Im\lambda|\|x\|^{2} \le |((A-\lambda I)x,x)|\le \|(A-\lambda I)x\|\|x\|,\\ |\Im\lambda|\|x\| \le \|(A-\lambda I)x\|. $$ So $A-\lambda I$ is injective for all $\lambda\notin\mathbb{R}$. The above inequality can be used to show that the range $\mathcal{R}(A-\lambda I)$ is closed for $\lambda\notin\mathbb{R}$. So $A-\lambda I$ is surjective for $\lambda\notin\mathbb{R}$ because $$ \begin{align} \mathcal{R}(A-\lambda I)& =\overline{\mathcal{R}(A-\lambda I)} \\ & =\mathcal{N}(A^{\star}-\overline{\lambda}I)^{\perp} \\ & = \mathcal{N}(A-\overline{\lambda}I)^{\perp}=\{0\}^{\perp}=H. \end{align} $$ Therefore, $A-\lambda I$ is injective and surjective for $\lambda\notin\mathbb{R}$, which leaves $\sigma(A)\subseteq\mathbb{R}$.

Related Question