[Math] Solving for $\sum_{n = 1}^{\infty} \frac{n^3}{8^n}$

sequences-and-series

I was trying to solve $ \displaystyle \sum_{n = 1}^{\infty} \frac{n^3}{8^n}$ and I found a way to solve it and I want if there are generalizations for, say, $\displaystyle \sum_{n=1}^{\infty} \frac{n^k}{a^n}$ in terms of $k$ and $a$. I would also like to know if there is a better way to solve it. Here's how I did it:

First I decomposed the series into the following sums:

$S_1 = \frac{1}{8} + \frac{1}{64} + \dots = \frac{\frac{1}{8}}{\frac{7}{8}}$

$S_2 = \frac{7}{64} + \frac{7}{512} + \dots = \frac{\frac{7}{64}}{\frac{7}{8}}$

$S_3 = \frac{19}{512} + \frac{19}{4096} + \dots = \frac{\frac{19}{512}}{\frac{7}{8}}$

And deduced that the sum can be written as $\frac{8}{7} \displaystyle \sum_{n = 1}^{\infty} \frac{3n^2 – 3n + 1}{8^n}$

$\displaystyle \sum_{n = 1}^{\infty} \frac{1}{8^n}$ is easy to evaluate — it's $\frac{1}{7} $by geometric series

$\displaystyle \sum_{n = 1}^{\infty} \frac{n}{8^n}$ can be evaluated in a whole host of ways to get an answer of $\frac{8}{49}$.

It remains to evaluate $\displaystyle \sum_{n = 1}^{\infty} \frac{n^2}{8^n}$, for which I took a similar approach as the cubics by decomposing it into many sums:

$T_1 = \frac{1}{8} + \frac{1}{64} + \dots = \frac{\frac{1}{8}}{\frac{7}{8}}$

$T_2 = \frac{3}{64} + \frac{3}{512} + \dots = \frac{\frac{3}{64}}{\frac{7}{8}}$

And so forth, coming to the conclusion that it is equal to $\frac{8}{7} \displaystyle \sum_{n = 1}^{\infty} \frac{2n-1}{8^n}$

Now, I used this information and the above values for $\displaystyle \sum_{n = 1}^{\infty} \frac{1}{8^n}$ and $\displaystyle \sum_{n = 1}^{\infty} \frac{n}{8^n}$ to get the sum as $\frac{776}{2401}$, which is confirmed by WA.

So, I would like to reiterate here: Is there a simpler way to compute this sum, and are there any known generalizations for this problem given an arbitrary $a$ in the denominator and arbitrary $k$ as the exponent in the numerator?

Best Answer

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle #1 \right\rangle} \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left( #1 \right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ With $p\ \ni\ \verts{p} < 1$: \begin{align} \sum_{n = 1}^{\infty}p^{n} &= {p \over 1 - p} = - 1 + {1 \over 1 - p} \end{align} Derive respect of $p$ and after that multiply by $p$: \begin{align} \sum_{n = 1}^{\infty}np^{n} &= {p \over \pars{1 - p}^{2}} \\ \sum_{n = 1}^{\infty}n^{2}p^{n} &= -\,{p + p^{2} \over \pars{1 - p}^{3}} \\ \sum_{n = 1}^{\infty}n^{3}p^{n} &= {p - 4p^{2} + p^{3} \over \pars{1 - p}^{4}} \end{align}

Set $p = 1/8$: $$\color{#00f}{\large% \sum_{n = 1}^{\infty}n^{3}\pars{1 \over 8}^{n} = \left.{p - 4p^{2} + p^{3} \over \pars{1 - p}^{4}}\right\vert_{p\ =\ 1/8} = {776 \over 2401}} $$

Related Question